So sánh các phương pháp phân tích và kiểm định yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân: Trường hợp của Ngân hàng Hợp tác (Co-opBank)
(A comparison of models for factors affecting personal loan default: The Case of Co-opBank)
Ngô Tiến Quý[1]
Nguyễn Việt Dũng[2]
Nguyễn Thiện Toàn[3]
Tóm tắt
Bài viết áp dụng và so sánh 3 phương pháp phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân là: Phân tích phân biệt (Multiple Discriminant Analysis - MDA), hồi quy Logit và Probit. Dữ liệu được sử dụng là các khoản cấp tín dụng cá nhân tại ngân hàng Co-opBank, Chi nhánh Bắc Ninh giai đoạn 2013 – 2018, với mẫu nghiên cứu gồm 4.451 quan sát, trong đó nhóm không vỡ nợ là 3.996 và nhóm vỡ nợ là 455 quan sát. Kết quả cho thấy hồi quy Logit phù hợp nhất với mẫu dữ liệu. Phương pháp MDA đem lại kết quả chấp nhận được. Trong khi đó, hồi quy Probit có hiệu quả thấp hơn khá rõ rệt so với 2 phương pháp trên.
Từ khóa: Tín dụng khách hàng cá nhân, các yếu tố ảnh hưởng khả năng vỡ nợ, phân tích phân biệt, hồi quy Logit, hồi quy Probit.
Abstract
The paper applies and compares three methods of analyzing factors affecting personal loan default: Multiple Discriminant Analysis (MDA), Logit and Probit regressions. The data used comes from personal loans granted by Co-opBank’s Bac Ninh Branch for the period of 2013-2018, with a final sample including 3,996 non-default and 455 default observations. The results show that Logit regression is best suited to the data. The MDA method yields acceptable results but Probit regression has a significantly lower efficiency than the other two methods.
Keywords: Personal loan, Factors affecting default, MDA, Logit, Probit.
- Giới thiệu
Thị trường tín dụng ngân hàng đối với khách hàng cá nhân tại Việt Nam đang phát triển và có tiềm năng lớn trong tương lai khi mà nguồn vốn ngân hàng vẫn đang trong quá trình tiếp cận đến nhiều tầng lớp dân cư hơn. Với thu nhập từng bước gia tăng, nhiều cơ hội kinh doanh mở ra và tiêu dùng tăng lên, nhu cầu vay vốn nói riêng và sử dụng các dịch vụ ngân hàng nói chung của người dân tại Việt Nam đang tăng cao. Không chỉ tín dụng tiêu dùng, tín dụng cá nhân với mục đích sản xuất kinh doanh hộ gia đình cũng chứng kiến sự tăng trưởng mạnh mẽ trong giai đoạn này. Các ngân hàng đều muốn chiếm lĩnh thị trường này, tối đa hóa lợi nhuận nhưng cũng có chung lo ngại về rủi ro trong cho vay đối với đối tượng khách hàng cá nhân.
Ngân hàng gặp phải một bài toán khó giải quyết khi phải cân nhắc hồ sơ vay vốn từ các cá nhân để ra quyết định cho vay. Bên cạnh mục tiêu mở rộng thị trường, tăng trưởng doanh thu, ngân hàng phải thận trọng với các quyết định của mình và không thể dễ dàng chấp nhận cấp vốn cho mọi cá nhân có nhu cầu. Nếu như những khách hàng tốt mang về doanh số và thu nhập cho ngân hàng đều đặn thì một vài hợp đồng tín dụng vỡ nợ có thể khiến lợi nhuận sụt giảm tức thì. Bởi vậy, việc xác định được khả năng vỡ nợ của khách hàng ngay từ thời điểm trước khi hình thành quan hệ tín dụng giữa ngân hàng và người cần vốn ảnh hưởng trực tiếp đến hiệu quả kinh doanh của ngân hàng. Hiện nay, khi so với khách hàng doanh nghiệp, các mô hình định lượng đánh giá rủi ro vỡ nợ của khách hàng cá nhân chưa thực sự phát triển. Vấn đề đặt ra là cần có một mô hình đo lường rủi ro vỡ nợ của khách hàng cá nhân có đủ tính tin cậy và khả năng dự báo chính xác, nghĩa là, một mô hình cần được kiểm chứng qua thực nghiệm trên dữ liệu tại thị trường cụ thể như Việt Nam.
2.1. Các nghiên cứu thực nghiệm
2.1.1. Các nghiên cứu về khả năng vỡ nợ của khách hàng cá nhân trên thế giới
- Chapman (1940) đã đặt nền móng cho những nghiên cứu về yếu tố ảnh hưởng đến khả năng vỡ nợ của khách hàng cá nhân từ rất sớm và phân loại gồm: đặc điểm nhân khẩu học (tuổi tác, giới tính, gia đình…), đặc điểm nghề nghiệp, đặc điểm thu nhập, đặc điểm học vấn và đặc điểm khoản vay. Ngoài ra còn một yếu tố khác liên quan đến sự sẵn lòng trả nợ của khách hàng.
- Arminger & cộng sự (1997) sử dụng 3 phương pháp là phân tích phân biệt logistic (logistic discriminant analysis), phân tích CART và hệ thống tiếp thuận (feedforward network) trên bộ mẫu dữ liệu 8.163 quan sát trong 2 năm 1991 – 1992 ở một ngân hàng Đức. Kết quả cho thấy người trưởng thành, người có thâm niên công tác, người có ôtô, nữ giới và những người có gia đình có khả năng trả nợ tốt hơn.
- Vasanthi & Raja (2006) ước tính khả năng vỡ nợ liên quan đến thu nhập và các yếu tố khác với dữ liệu của Úc (Cục Thống kê Úc, ABS 2001) cho một mẫu gồm 3.431 hộ gia đình. Vasanthi & Raja chỉ ra rằng độ tuổi của khách hàng, thu nhập và các yếu tố nhân khẩu học là những yếu tố quan trọng ảnh hưởng đến khả năng vỡ nợ. Nghiên cứu của Crook (2001) cũng nhấn mạnh yếu tố về thu nhập, việc sở hữu nhà và quy mô hộ gia đình. Black & Morgan (1998) cũng chú ý tới các yếu tố xã hội và các yếu tố về nhân khẩu học của người được cấp tín dụng.
- Autio & cộng sự (2009) nghiên cứu việc sử dụng các khoản vay nóng ở Phần Lan. Khảo sát trực tuyến được tiến hành cho các đối tượng từ 18 đến 29 tuổi với các câu hỏi về tuổi tác, giới tính, tình hình tài chính, thu nhập, việc làm và tình trạng lao động cũng như cấu trúc gia đình. Các yếu tố ảnh hưởng đến số lượng các khoản vay là tình trạng nghề nghiệp, thu nhập và cơ cấu hộ gia đình. Giới tính dường như không có ảnh hưởng.
- Kocenda & Vojtek (2011) nghiên cứu một mẫu gồm 3.403 quan sát với 21 biến giải thích. Với 2 phương pháp hồi quy logistic và phân tích CART, kết quả cho thấy các đặc tính về tài chính và hành vi quan trọng trong giải thích khả năng vỡ nợ trong tín dụng tiêu dùng là: tài sản, trình độ học vấn, tình trạng hôn nhân, mục đích của khoản vay và thời gian có tài khoản ngân hàng.
- Bên cạnh những yếu tố cơ bản đã nêu, Lea & cộng sự (1993) thêm những yếu tố vĩ mô (kinh tế, xã hội) ảnh hưởng. Kohansal & Mansoori (2009) thêm về vấn đề rủi ro đạo đức và đặc điểm của cán bộ cho vay, Macana (2006) bổ sung yếu tố rủi ro tác nghiệp từ phía ngân hàng. Rodrigues (2008) đã tìm hiểu một số yếu tố chỉ tiêu bất thường mà người đi vay không dự đoán trước.
- Một số những nghiên cứu tìm ra kết quả có những mâu thuẫn so với hiểu biết thông thường. Livingston & Lunt (1992) đã cho thấy những người có thu nhập cao và ít con có khả năng mắc nợ cao hơn. Özdemir & Boran (2004) sử dụng hồ quy Logit nhị phân (logistic binary regression) nghiên cứu dữ liệu từ một ngân hàng Thổ Nhĩ Kỳ. Tác giả không thấy có tác động của các biến nhân khẩu học tới khả năng vỡ nợ, trừ biến tình trạng nơi ở. Trong khi đó, các đặc điểm về tài chính có thể giải thích tốt khả năng vỡ nợ, trong đó phải kể tới lãi suất và thời hạn vay. Thời hạn vay càng dài và lãi suất càng cao thì khả năng hoàn thành đúng nghĩa vụ thanh toán nợ của khách hàng càng giảm.
2.1.2. Các nghiên cứu về khả năng vỡ nợ KHCN tại Việt Nam
- Các nghiên cứu về trường hợp Việt Nam còn rất hạn chế về số lượng. Dinh & Kleimeier (2007) sử dụng bộ dữ liệu gồm 56.037 quan sát với hồi quy logistic và phương pháp stepwise để chọn ra 16 yếu tố ảnh hưởng. Một số yếu tố được nhấn mạnh là thâm niên giao dịch với ngân hàng, giới tính, số khoản vay và thời hạn vay.
- Pham & Lensink (2008) sử dụng dữ liệu hộ gia đình Việt Nam xem xét sự khác biệt về khả năng vỡ nợ trong tín dụng chính thức, phi chính thức và bán chính thức. Từ đó, nhóm đánh giá các yếu tố quyết định khả năng vỡ nợ đối với 3 loại trên. Thời hạn cho vay và lãi suất cho vay và vai trò của người thân trong cho vay không chính thức (làm giảm tỷ lệ vỡ nợ) là ba yếu tố ảnh hưởng được nhấn mạnh ở thị trường Việt Nam.
2.2. Tổng hợp các yếu tố ảnh hưởng đến khả năng vỡ nợ của KHCN
2.2.1. Đặc điểm nhân khẩu học
Đặc điểm nhân khẩu học bao gồm những yếu tố về bản thân khách hàng:
- Độ tuổi: Đây là yếu tố quan trọng và có mặt trong hầu hết các nghiên cứu thực nghiệm nêu trên. Chapman (1940), Thomas (2000), Boyes & cộng sự (2002), Kohansal & Mansoori (2009) cũng như một số nghiên cứu trước đây đã đưa ra kết luận rằng độ tuổi người được cấp tín dụng càng lớn thì khả năng trả nợ của họ càng cao. Khách hàng trẻ tuổi có xu hướng bị ảnh hưởng xấu bởi gánh nặng của các khoản tín dụng và các yếu tố liên quan đến độ tuổi trẻ cũng sẽ làm giảm khả năng trả nợ. Người lớn tuổi có những ràng buộc về uy tín, kinh nghiệm sống nhiều hơn; trong khi về rủi ro nghề nghiệp nói chung thấp hơn. Ngược lại, vẫn luôn có những ý kiến trái chiều như: sức khỏe thấp hơn, số người phụ thuộc lớn hơn sẽ làm độ tuổi ảnh hưởng ngược chiều với khả năng trả nợ. Đối với hộ gia đình có hoạt động kinh doanh, độ tuổi có thể là yếu tố bao hàm độ tuổi cũng như cả tình trạng sức khỏe của người đi vay và có thể liệt kê thêm tuổi nghề của lao động do người đi vay thuê để tiến hành hoạt động kinh doanh hộ gia đình.
- Giới tính: Zelizer (1994) cho thấy sự quan trọng của yếu tố giới tính. Nam giới và nữ giới có sự khác nhau về việc tiếp nhận, sử dụng cũng như quan niệm về giá trị tiền bạc. Chapman (1990), Weber & Musshoff (2012) chỉ ra rằng nữ giới có khả năng ít tạo ra các rủi ro tín dụng hơn là nam giới do họ ít phạm tội, cá tính thận trọng, và ít gây ra các rủi ro đạo đức.
- Tình trạng hôn nhân: yếu tố này gây ra những tranh cãi lớn hơn xung quanh nó. Lập gia đình có thể tạo ra những nền tảng cho khả năng trả nợ như khách hàng sẽ chín chắn, ngại rủi ro hơn; nhưng cũng đem lại những ràng buộc về chăm lo gia đình và những người phụ thuộc. Nghiên cứu của Duygan-Bump & Grant (2008) không đề cao ảnh hưởng của biến này.
2.2.2. Đặc điểm nghề nghiệp
- Những cá nhân có nghề nghiệp ổn định (công chức Nhà nước, nhân viên văn phòng), có vị trí xã hội (giám đốc, chủ tịch), có kinh nghiệm lâu năm hoặc trong những lĩnh vực đòi hỏi chất xám cao hay có tay nghề vững vàng (kế toán, kỹ sư, bác sĩ) có khả năng tạo ra nguồn thu nhập ổn định và cao hơn những lĩnh vực nghề nghiệp khác, từ đó, khả năng trả nợ đúng hạn là cao hơn. Kohansal & Mansoori (2009) nghiên cứu dữ liệu với khách hàng là nông dân tại tỉnh Khorasan-Razavi (Iran) và chỉ ra những nông dân có kinh nghiệm lâu năm hơn là những người có tỷ lệ trả nợ cao hơn. Trong một nghiên cứu tương tự, Acquah & Addo (2011) sử dụng dữ liệu là số năm kinh nghiệm của các ngư dân tại Ghana nhưng lại không tìm thấy ý nghĩa thống kê về ảnh hưởng của biến số này.
- Đối với hoạt động kinh doanh hộ gia đình, đặc điểm nghề nghiệp được coi là bao hàm thêm nhiều yếu tố (sẽ được phân tích, kiểm định trong mục IV và V) như thời gian trung bình của lao động tại cơ sở kinh doanh, khả năng tổ chức sản xuất kinh doanh, ngành nghề kinh doanh, kinh nghiệm sản xuất kinh doanh, kế hoạch kinh doanh, khách hàng sử dụng dịch vụ tại các TCTD khác, quan hệ với nhà cung cấp, công tác nghiên cứu thị trường, công tác ghi chép kế toán, kênh phân phối, thâm niên quan hệ với các TCTD, việc sở hữu cơ sở kinh doanh…
2.2.3. Đặc điểm trình độ học vấn
- Yếu tố về trình độ học vấn nhận được rất nhiều những ý kiến ủng hộ với giả thuyết rằng những người có học vấn cao sẽ có khả năng trả nợ cao hơn. Yếu tố này tương quan với những yếu tố về thu nhập, nghề nghiệp… và đặc biệt liên quan với ý chí trả nợ của khách hàng (Haile & cộng sự, 2012).
2.2.4. Đặc điểm thu nhập
- Là yếu tố cơ bản cấu thành nền tảng trả nợ của khách hàng, hầu hết các nghiên cứu đều chỉ ra tầm ảnh hưởng quan trọng của yếu tố này. Thu nhập cao và ổn định sẽ giúp khả năng trả nợ nâng cao. Tuy nhiên, tương quan cao lại không dễ tìm thấy trong thực nghiệm với những điều kiện ảnh hưởng khác như: ý chí trả nợ của khách hàng, cán bộ tín dụng quá chủ quan trong quá trình quyết định cho vay…
- Đối với cá nhân, hộ gia đình có hoạt động kinh doanh, đặc điểm thu nhập có thể liên quan nhiều chi tiết như: tỷ lệ vốn tự có, khả năng sinh lời, biến động giá sản phẩm, chi phí đầu vào, giá sản phẩm so với thị trường, tăng trưởng doanh thu…
2.2.5. Đặc điểm khoản cấp tín dụng
- Ba yếu tố chính của một khoản cấp tín dụng là kích cỡ khoản tín dụng, lãi suất, và thời hạn cấp tín dụng. Các giả thuyết được chấp nhận phổ biến là: kích cỡ khoản vay càng thấp, lãi suất cho vay càng thấp, thời hạn khoản vay càng dài sẽ khiến khả năng trả nợ càng cao.
- Sharma & Zeller (1997) và Kohansal & Mansoori (2009) có những kết luận ngược lại về kích cỡ khoản vay khi kích cỡ càng lớn khả năng trả nợ càng cao. Những nghiên cứu trên giải thích rằng các khoản vay lớn thường để đầu tư kinh doanh còn khoản vay nhỏ thường thuần cho chi tiêu dùng cá nhân. Hơn nữa, khoản vay lớn khiến khách hàng thận trọng khi sử dụng khoản tín dụng và tập trung cố gắng hoàn thành trả nợ. Về lãi suất cấp tín dụng, những tranh luận ngược chiều là ít hơn. Các nghiên cứu gần đây của Deininge & Liu (2009), Ugbomeh & cộng sự (2008), và Onyeagocha & cộng sự (2012) cũng cho những kết quả tương tự với giả thuyết. Ảnh hưởng của thời hạn cấp tín dụng có những kết quả khác nhau trong các nghiên cứu. Trong khi Chapman (1940) chỉ ra tín dụng ngắn hạn (một năm trở xuống) sẽ giúp khả năng trả nợ cao hơn, Onyeagocha & cộng sự (2012) không tìm thấy ảnh hưởng của yếu tố này.
2.2.6. Thông tin bất cân xứng
- Thông tin bất cân xứng trong hoạt động cấp tín dụng bao gồm rủi ro lựa chọn đối nghịch và rủi ro đạo đức của khách hàng. Rủi ro lựa chọn đối nghịch (Adverse selection) xảy ra khi những khách hàng có khả năng trả nợ thấp lại tích cực thể hiện những điểm tốt và được ngân hàng tin tưởng, trong khi những khách hàng có khả năng trả nợ cao không nỗ lực tìm kiếm vốn tín dụng lại không được ngân hàng đánh giá cao. Rủi ro đạo đức khách hàng (Moral hazard) xảy ra khi khách hàng sử dụng khoản tín dụng không đúng với mục đích ban đầu và ngân hàng không kiểm soát được điều đó. Thông tin bất cân xứng đem lại những đánh giá cũng như những quyết định sai, ảnh hưởng đến rủi ro vỡ nợ.
2.2.7. Rủi ro tác nghiệp từ ngân hàng
- Đây là yếu tố khó xác định và chưa được nghiên cứu nhiều, chỉ được nêu lên như một giả thuyết cần lưu ý (Macana, 2006). Trong quá trình thẩm định tín dụng, ngân hàng dễ chịu những rủi ro tác nghiệp từ cán bộ tín dụng – năng lực yếu, bất cẩn, tư lợi cá nhân, hoặc từ hệ thống chấm điểm tín dụng – không chính xác, hợp lý, hiệu quả.
2.2.8. Sự kiện bất thường
- Tín dụng cá nhân có những đặc trưng riêng so với tín dụng doanh nghiệp. Khả năng vỡ nợ của khách hàng cá nhân chịu sự biến động và ảnh hưởng lớn từ những sự kiện xảy ra trong đời sống của khách hàng đó. Những sự kiện bất thường (ốm đau, tai nạn, mất việc…) không nằm trong dự kiến sẽ khiến tình hình tài chính, sức khỏe, cũng như tâm lý của khách hàng bị ảnh hưởng.
3.1. Phương pháp phân tích phân biệt (Multiple Discriminant Analysis - MDA)
MDA cho phép phân loại các trường hợp thành các nhóm, phân tích sự khác biệt giữa các nhóm. Phương pháp MDA trên thực tế có khả năng phân biệt thành nhiều hơn 2 nhóm, số hàm khác biệt sẽ ít hơn số nhóm khác biệt 1 đơn vị. Ở đây, phương pháp phân tích phân biệt tìm một hàm tuyến tính (hàm phân biệt – discriminant function) của các biến tài chính, thị trường để phân biệt giữa hai nhóm rủi ro vỡ nợ cao và thấp (Durand, 1941). Sự khác biệt giữa hai nhóm được đo lường bằng trung bình của các biến phân biệt – chỉ số z.
3.2. Phương pháp hồi quy Logit
- Phương pháp hồi quy Logit (Maddala, 1984) là một mô hình nhị thức (biến phụ thuộc là biến nhị phân, chỉ có thể nhận hai giá trị là 0 hoặc 1). Mô hình này được ứng dụng rộng rãi trong phân tích kinh tế nói chung và rủi ro tín dụng nói riêng. Ở đây, hồi quy logit được dùng để đánh giá khả năng vỡ nợ (có hoặc không tương ứng với 0 hoặc 1) dựa trên các yếu tố ảnh hưởng.
Mô hình không có giả thiết về phân phối của các biến độc lập, các biến độc lập định tính thông qua việc thiết lập biến giả có thể chuyển thành định lượng. Các chỉ tiêu thông qua đó có thể được lượng hóa nhằm so sánh, phân loại và xếp hạng. Wiginton (1980) so sánh hồi quy Logit với phương pháp MDA và kết luận hồi quy Logit đem lại những kết quả phân loại tốt hơn trong việc chấm điểm tín dụng. Việc kiểm định thống kê không phức tạp và có thể điều chỉnh hàm phi tuyến dễ dàng cũng là những ưu điểm của phương pháp.
3.2. Phương pháp hồi quy Probit
Phương pháp này được sử dụng đầu tiên bởi Goldberger (1964). Về bản chất, phương pháp Probit và Logit giống nhau và đều thuộc dạng mô hình hồi quy, dựa trên phương pháp ước lượng hợp lý cực đại (Maximum likelihood). Điều khác nhau là mô hình Probit dựa trên hàm phân phối chuẩn chuẩn hóa, trong khi mô hình Logit dựa trên giả định hàm phân phối logistic chuẩn.
3.3. Các phương pháp khác
Trong số các phương pháp mới để đánh giá khả năng vỡ nợ, nổi bật là mô hình mạng nơ-ron. Mô hình mạng nơ-ron sử dụng nguyên lý tính toán song song bao gồm nhiều quá trình đơn giản được kết nối với nhau. Trong mỗi quá trình này, các phép tính được thực hiện đơn giản, do một nơ-ron đảm trách. Nhưng chính những nơ-ron đơn giản này lại có thể giải quyết được những nhiệm vụ rất phức tạp khi được kết nối, tổ chức với nhau một cách hợp lý. Mạng nơ-ron có thể bắt chước và nhận thức được các trạng thái thực đối với dữ liệu đầu vào không đầy đủ hoặc dữ liệu với một số lượng biến rất lớn. Kỹ thuật này đặc biệt phù hợp với mô hình dự báo mà không có công thức toán học nào được biết để miêu tả mối quan hệ giữa các biến đầu vào và đầu ra. Phương pháp này có ít giả định hơn, phù hợp nhất khi các khoản cấp tín dụng là không đồng nhất (Rosenberg & Gleit, 1994). Tuy nhiên, việc sử dụng phương pháp mạng nơ-ron phức tạp hơn nhưng không đảm bảo hiệu quả hơn so với các phương pháp truyền thống (Altman & cộng sự, 1994).
Ngoài ra, các kỹ thuật được sử dụng trong việc xây dựng mô hình phân tích tín dụng cá nhân khác có thể kể đến là: phi tham số (Chatterjee & Barcun, 1970), lập trình toán (Hand, 1981), mô hình chuỗi Markov, phân vùng đệ quy (Breiman, 1984), hệ thống chuyên gia (Zocco, 1985), giải thuật di truyền, mô hình độc lập có điều kiện, mô hình cơ cấu theo lý thuyết quyền chọn…
- Mẫu, dữ liệu và phương pháp nghiên cứu
Bài viết so sánh các phương pháp phân tích và kiểm định yếu tố ảnh hưởng đến khả năng vỡ nợ sử dụng dữ liệu từ các khoản cấp tín dụng cá nhân tại ngân hàng Co-opBank Chi nhánh Bắc Ninh giai đoạn 2013 - 2018. Đối với mỗi khoản tín dụng, dữ liệu được thu thập tại t-1, với t là thời điểm thực hiện nghĩa vụ hoàn trả để xác định khách hàng có hoàn trả được hay không. Dữ liệu thu thập từ Chi nhánh gồm 4.566 khoản tín dụng.
Từ các dữ liệu có sẵn tại Chi nhánh, trên cơ sở các yếu tố ảnh hưởng đã trình bày trên đây, 28 yếu tố được lọc ra để đưa vào phân tích và kiểm định. Các biến định tính được biến đổi sang biến giả định lượng. Sau đó, mẫu được chia thành 2 nhóm: vỡ nợ và không vỡ nợ. Vỡ nợ ở đây được phân loại như các trường hợp tạo nợ xấu theo Ngân hàng Nhà nước – trả nợ gốc hoặc/và lãi chậm trên 90 ngày. Cuối cùng, các giá trị trội hẳn và có nghi vấn sai sót được loại bỏ. Sau toàn bộ quá trình thu thập và xử lý dữ liệu, mẫu cuối cùng còn lại 4.451 quan sát, trong đó, nhóm không vỡ nợ là 3.996 quan sát và 455 quan sát vỡ nợ. Mỗi quan sát bao gồm 28 yếu tố ảnh hưởng cần phân tích và kiểm định. Nội dung các yếu tố ảnh hưởng được trình bày trong Bảng 1.
Bảng 1. Các yếu tố ảnh hưởng đến khả năng vỡ nợ KHCN
Nhóm yếu tố
Ký hiệu yếu tố
Nội dung yếu tố
Đặc điểm nhân khẩu học
tuoi_nghe_tb_cua_lao_dong
Số năm kinh nghiệm làm việc trung bình của lao động
Tuoi
Tuổi
suc_khoe_kh
Sức khỏe
Đặc điểm nghề nghiệp
tg_tb_lao_dong_tai_cskd
Thời gian trung bình của lao động tại cơ sở kinh doanh
to_chuc_sxkd
Khả năng tổ chức sản xuất kinh doanh
nganh_nghe_kd
Ngành nghề kinh doanh
su_dung_dv_cua_tctd_khac
Khách hàng sử dụng dịch vụ tại các TCTD khác
quan_he_nha_cung_cap
Quan hệ với nhà cung cấp
nghien_cuu_thi_truong
Công tác nghiên cứu thị trường
ghi_chep_ke_toan
Công tác ghi chép kế toán
kinh_nghiem_sxkd
Kinh nghiệm sản xuất kinh doanh
khkd_2_nam
Kế hoạch kinh doanh 2 năm
kenh_phan_phoi
Kênh phân phối
tg_quan_he_tctd
Thâm niên quan hệ với các TCTD
so_huu_dia_diem_kd
Việc sở hữu cơ sở kinh doanh
Đặc điểm trình độ học vấn
trinh_do_hoc_van
Trình độ học vấn
Đặc điểm thu nhập
lntt_tren_von_tu_co
LNTT trên vốn tự có
ty_le_von_tu_co
Tỷ lệ vốn tự có
ln_tren_doanh_thu
Lợi nhuận biên
xu_huong_bien_dong_gia_sp
Biến động giá sản phẩm
rui_ro_chi_phi_dau_vao
Chi phí đầu vào
gia_sp_so_voi_tt
Giá sản phẩm so với thị trường
tang_truong_doanh_thu
Tăng trưởng doanh thu
Đặc điểm khoản cấp tín dụng
muc_de_nghi_vay_von
Mức đề nghị vay vốn
thoi_han_vay
Thời hạn vay
tinh_trang_no
Khách hàng chịu những khoản nợ khác
Thông tin bất cân xứng
chap_hanh_quy_dinh_kd
Khách hàng nghiêm túc chấp hành quy định kinh doanh
doi_tuong_kh
Mức độ thân thiết và uy tín của khách hàng
Thống kê mô tả về các yếu tố ảnh hưởng được trình bày trong bảng 2.
Bảng 2. Thống kê mô tả về các yếu tố ảnh hưởng
Nhóm yếu tố
Yếu tố
Tất cả KH (4451)
KH không vỡ nợ (3996)
KH vỡ nợ (455)
Trung bình
Độ lệch chuẩn
Trung bình
Độ lệch chuẩn
Trung bình
Độ lệch chuẩn
Đặc điểm nhân khẩu học
tuoi_nghe_tb_cua_lao_dong
3,581
1,009
3,581
1,006
3,585
1,037
Tuoi
3,371
1,184
3,356
1,202
3,508
0,995
suc_khoe_kh
1,970
0,179
1,977
0,148
1,908
0,339
Đặc điểm nghề nghiệp
tg_tb_lao_dong_tai_cskd
3,842
1,824
3,842
1,824
3,842
1,824
to_chuc_sxkd
2,173
0,408
2,177
0,397
2,138
0,493
nganh_nghe_kd
8,493
4,543
8,520
4,562
8,262
4,370
su_dung_dv_cua_tctd_khac
1,600
1,015
1,644
0,992
1,215
1,131
quan_he_nha_cung_cap
1,217
0,422
1,201
0,408
1,354
0,510
nghien_cuu_thi_truong
1,328
0,550
1,327
0,552
1,338
0,535
ghi_chep_ke_toan
2,132
0,429
2,147
0,431
2,000
0,393
kinh_nghiem_sxkd
1,949
0,227
1,962
0,190
1,831
0,414
khkd_2_nam
1,939
0,271
1,958
0,201
1,769
0,576
kenh_phan_phoi
1,945
0,273
1,950
0,261
1,892
0,357
tg_quan_he_tctd
2,551
1,658
2,474
1,484
3,223
2,655
so_huu_dia_diem_kd
1,952
0,226
1,962
0,205
1,862
0,346
Đặc điểm trình độ học vấn
trinh_do_hoc_van
0,253
0,613
0,246
0,607
0,308
0,655
Đặc điểm thu nhập
lntt_tren_von_tu_co
1,418
1,701
1,366
1,588
1,872
2,440
ty_le_von_tu_co
0,365
0,165
0,360
0,163
0,412
0,174
ln_tren_doanh_thu
0,208
0,059
0,208
0,059
0,211
0,054
xu_huong_bien_dong_gia_sp
2,306
0,722
2,309
0,709
2,277
0,833
rui_ro_chi_phi_dau_vao
1,650
0,639
1,668
0,634
1,492
0,660
gia_sp_so_voi_tt
1,352
0,615
1,357
0,621
1,308
0,553
tang_truong_doanh_thu
2,226
0,616
2,245
0,597
2,062
0,742
Đặc điểm khoản cấp tín dụng
muc_de_nghi_vay_von
3,736
2,235
3,812
2,343
3,062
0,426
thoi_han_vay
0,458
0,655
0,473
0,671
0,323
0,468
tinh_trang_no
0,070
0,266
0,077
0,277
0,015
0,123
Thông tin bất cân xứng
chap_hanh_quy_dinh_kd
1,208
0,436
1,209
0,428
1,200
0,503
doi_tuong_kh
1,920
0,276
1,925
0,269
1,877
0,329
Bài viết áp dụng 3 phương pháp để phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân: Phân tích phân biệt đa biến (Multiple Discriminant Analysis – MDA), phương pháp hồi quy Logit và phương pháp hồi quy Probit.
- Kết quả và thảo luận
5.1. Phương pháp MDA
Các biến độc lập, ngoại trừ ln_tren_doanh_thu (0,23), tuoi_nghe_tb_cua_lao_dong (0,944), chap_hanh_quy_dinh_kd (0,687), nganh_nghe_kd (0,251), xu_huong_bien_dong_gia_ sp (0,365), to_chuc_sxkd (0,055), nghien_cuu_thi_truong (0,682), đều có p-value nhỏ hơn 0,05, vì vậy có khả năng là các nhân tố phân biệt mang nhiều ý nghĩa thống kê. Các biến có giá trị Wilks’ l tương ứng nhỏ sẽ có nhiều ý nghĩa giải thích cho khả năng vỡ nợ.
Bảng 3. Kết quả kiểm định và ước lượng hàm phân biệt
Nhóm yếu tố
Yếu tố
Wilk’ l
F
Xác suất
Hệ số hàm phân biệt
Đặc điểm nhân khẩu học
tuoi_nghe_tb_cua_lao_dong
1
0,005
0,944
Tuoi
0,998
6,73
0,01
-0,152
suc_khoe_kh
0,986
63,175
0
-2,225
Đặc điểm nghề nghiệp
tg_tb_lao_dong_tai_cskd
0,93
336,598
0
-0,3
to_chuc_sxkd
0,999
3,677
0,055
0,734
nganh_nghe_kd
1
1,317
0,251
su_dung_dv_cua_tctd_khac
0,984
74,097
0
0,367
quan_he_nha_cung_cap
0,988
53,994
0
-1,332
nghien_cuu_thi_truong
1
0,167
0,682
ghi_chep_ke_toan
0,989
48,492
0
0,917
kinh_nghiem_sxkd
0,969
141,76
0
1,093
khkd_2_nam
0,955
207,666
0
1,206
kenh_phan_phoi
0,996
18,622
0
-0,255
tg_quan_he_tctd
0,981
84,882
0
-0,235
so_huu_dia_diem_kd
0,982
83,141
0
1,014
Đặc điểm trình độ học vấn
trinh_do_hoc_van
0,999
4,112
0,043
0,902
Đặc điểm thu nhập
lntt_tren_von_tu_co
0,992
36,359
0
-0,387
ty_le_von_tu_co
0,991
41,183
0
-2,353
ln_tren_doanh_thu
1
1,44
0,23
xu_huong_bien_dong_gia_sp
1
0,821
0,365
rui_ro_chi_phi_dau_vao
0,993
31,161
0
1,424
gia_sp_so_voi_tt
0,999
2,667
0,102
tang_truong_doanh_thu
0,992
36,463
0
0,312
Đặc điểm khoản cấp tín dụng
muc_de_nghi_vay_von
0,99
46,564
0
0,179
thoi_han_vay
0,995
21,496
0
0,321
tinh_trang_no
0,995
21,709
0
0,899
Thông tin bất cân xứng
chap_hanh_quy_dinh_kd
1
0,163
0,687
doi_tuong_kh
0,997
12,368
0
-0,538
Độ tương quan chính tắc (Canonical Correlation) h = 0,594. h2 = 0,353 chỉ ra tương quan giữa các biến độc lập với biến phụ thuộc là 35,3%. Giá trị Wilks' l thấp (0,648) và mức ý nghĩa cao (0,00) chứng minh có sự khác biệt giữa các giá trị trung bình của mỗi nhóm, hay nói cách khác, mô hình có ý nghĩa thống kê. Cột cuối cho phép xác định hàm tính chỉ số z của Bảng 3 hệ số hàm phân biệt, Ngoài ra, kết quả cũng cho phép xác định điểm ngưỡng để phân loại như trong Bảng 4.
Bảng 4. Trọng tâm nhóm và điểm ngưỡng
Nhóm không vỡ nợ
Z = 0,249
Điểm ngưỡng=
Nhóm vỡ nợ
Z = -2,186
Kết quả, những quan sát có chỉ số z lớn hơn điểm ngưỡng được dự báo thuộc nhóm không vỡ nợ, còn lại thuộc nhóm vỡ nợ.
5.2. Phương pháp hồi quy Logit
Trước hết, kiểm định Hosmer-Lemeshow và kiểm định likelihood ratio được sử dụng để kiểm tra tính định dạng đúng của mô hình. Mô hình hợp lý là mô hình được định dạng đúng, việc định dạng sai có thể dẫn đến các sai lệch và làm kết quả dự báo bị méo mó.
H0 của kiểm định Hosmer-Lemeshow là không có sự khác biệt giữa giá trị thực tế và dự báo. H1 là có sự khác biệt đáng kể giữa giá trị thực tế và dự báo. Kết quả kiểm định cho thấy chi-square có giá trị 10,154, xác suất là 0,273, không thể bác bỏ H0. Như vậy mô hình có định dạng phù hợp.
Kiểm định likelihood-ratio cho thấy giá trị -2LL là 831,593 tương đối thấp, chỉ ra mức độ phù hợp tương đối của mô hình. Nagelkerke R2 là 0,536, cho thấy tương quan giữa các biến độc lập và phụ thuộc là 53,6%. Đây là mức không cao nhưng hoàn toàn có thể chấp nhận được.
Hồi quy Logit dùng kiểm định Wald để kiểm định các hệ số hồi quy thay vì kiểm định thống kê t (t-statistic) trong mô hình hồi quy tuyến tính thông thường.
Bảng 5. Kết quả ước lượng hồi quy Logit
Nhóm yếu tố
Yếu tố
Hệ số
Sai số chuẩn
Kiểm định Wald
Xác suất
Đặc điểm nhân khẩu học
tuoi
-0,332**
0,135
6,035
0,014
Đặc điểm nghề nghiệp
tg_tb_lao_dong_tai_cskd
0,534***
0,042
159,548
0
to_chuc_sxkd
-1,603***
0,242
43,77
0
su_dung_dv_cua_tctd_khac
-2,436***
0,4
37,118
0
quan_he_nha_cung_cap
2,165***
0,209
107,222
0
nghien_cuu_thi_truong
-0,47***
0,148
10,111
0,001
ghi_chep_ke_toan
-1,853***
0,218
72,199
0
tg_quan_he_tctd
6,611***
0,478
191,005
0
Đặc điểm trình độ học vấn
trinh_do_hoc_van
0,195**
0,132
2,163
0,014
Đặc điểm thu nhập
lntt_tren_von_tu_co
0,967***
0,059
273,165
0
ty_le_von_tu_co
5,334***
0,598
79,523
0
ln_tren_doanh_thu
3,571***
1,273
7,862
0,005
rui_ro_chi_phi_dau_vao
-31,399***
2,761
129,322
0
gia_sp_so_voi_tt
22,637***
2,988
57,401
0
tang_truong_doanh_thu
-4,221***
0,72
34,376
0
Đặc điểm khoản cấp tín dụng
muc_de_nghi_vay_von
-0,138***
0,046
8,777
0,003
thoi_han_vay
-1,384***
0,186
55,197
0
tinh_trang_no
-2,079***
0,408
26,024
0
***, **: có ý nghĩa thống kê lần lượt ở mức 1% và 5%
5.3. Phương pháp hồi quy Probit
Kết quả kiểm định Hosmer-Lemeshow cho thấy xác suất là 0,065 vượt 0,05 nên không thể bác bỏ H0, mô hình có định dạng phù hợp.
Hệ số hồi quy của các yếu tố được đưa vào mô hình đều có ý nghĩa thống kê với p-value nhỏ hơn 0,05. Hệ số R2 cho thấy các biến độc lập giải thích được 35,06% biến động của biến phụ thuộc.
Bảng 6. Kết quả ước lượng mô hình Probit
Nhóm yếu tố
Yếu tố
b
Xác suất
Đặc điểm nhân khẩu học
tuoi_nghe_tb_cua_lao_dong
-0,217***
0
tuoi
0,163***
0
suc_khoe_kh
-0,284
0,15
Đặc điểm nghề nghiệp
tg_tb_lao_dong_tai_cskd
0,279***
0
to_chuc_sxkd
-0,545***
0
su_dung_dv_cua_tctd_khac
-0,357***
0
kinh_nghiem_sxkd
-1,077***
0
cong_nghiep
0,412***
0
dich_vu
0,307**
0,01
tg_quan_he_tctd
0,198***
0
so_huu_dia_diem_kd
-1,219***
0
Đặc điểm trình độ học vấn
trinh_do_hoc_van
-0,136**
0,049
Đặc điểm thu nhập
lntt_tren_von_tu_co
0,332***
0
ty_le_von_tu_co
2,085***
0
ln_tren_doanh_thu
1,431**
0,023
gia_sp_so_voi_tt
0,422***
0
tang_truong_doanh_thu
-0,381***
0
Đặc điểm khoản cấp tín dụng
muc_de_nghi_vay_von
-0,137***
0
tinh_trang_no
-1,162***
0
Thông tin bất cân xứng
chap_hanh_quy_dinh_kd
0,325***
0,004
***, **: có ý nghĩa thống kê lần lượt ở mức 1% và 5%
5.4. So sánh các phương pháp
Bảng 7. Khả năng giải thích của 3 phương pháp
Phương pháp
MDA
Logit
Probit
Pseudo
35,28%
53,60%
35,06%
Dự đoán đúng số người vỡ nợ
56,9%
52,31%
27,03%
Dự đoán đúng số người không vỡ nợ
97,4%
97,95%
98,5%
Khả năng dự đoán đúng tổng thể
93,30%
93,28%
91,19%
Kết quả trong bảng 7 cho thấy, căn cứ vào giá trị R2, phương pháp Logit có sức giải thích lớn nhất (53,6%). 2 phương pháp MDA và Probit ở mức thấp hơn rõ rệt, lần lượt có sức giải thích là 35,28% và 35,06%.
Phương pháp MDA cho kết quả dự đoán đúng số người vỡ nợ cao nhất với tỷ số 259/455 người (56,9%). Phương pháp Probit dự đoán đúng số người không vỡ nợ cao nhất với 3936/3996 người (98,5%).
Khả năng dự báo tổng thể của phương pháp Probit là 91,19%, thấp hơn 2 phương pháp kia. Cụ thể, phương pháp MDA có khả năng dự báo đúng tổng thể là 93,30%. Phương pháp Logit dự báo đúng 3914 người không vỡ nợ và 238 người vỡ nợ, tổng kết quả là 4152/4451 người dự đoán đúng (93,28%).
Bài viết cũng áp dụng phân tích ROC (Receiver operating characteristic) để so sánh 3 phương pháp.
Bảng 8. Đường cong ROC của các phương pháp
Phương pháp
MDA
Logit
Probit
Đường cong ROC
Khu vực dưới ROC
0,934
0,924
0,878
Trên đồ thị đường cong ROC, trục hoành thể hiện mối liên hệ giữa việc phân loại vỡ nợ sai với tổng nhóm vỡ nợ - độ cụ thể (specificity - khả năng mà mô hình phân loại đúng các trường hợp không vỡ nợ), trong khi trục tung thể hiện độ nhạy cảm (sensitivity - khả năng mô hình phân loại vỡ nợ đúng). Đường cong ROC càng gần trục tung, hay nói cách khác là khu vực dưới đường cong ROC càng lớn thì khả năng dự báo càng tốt.
Khu vực dưới ROC của phương pháp Probit là thấp nhất (0,878), thể hiện độ phù hợp kém nhất. Hai phương pháp MDA và Logit có chỉ số khu vực dưới ROC khá cao và xấp xỉ nhau thể hiện độ phù hợp và khả năng dự đoán rất tốt (lần lượt là 0,934 và 0,924).
- Kết luận
Như vậy, việc ứng dụng 3 phương pháp MDA, Logit và Probit để phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân tại Ngân hàng Hợp tác và việc so sánh các phương pháp cho phép rút ra các kết luận sau:
- Về các yếu tố ảnh hưởng: Chất lượng tổ chức sản xuất kinh doanh, kinh nghiệm sản xuất kinh doanh, tăng trưởng doanh thu, tuổi nghề trung bình, sử hữu địa điểm kinh doanh, sử dụng dịch vụ của tổ chức tín dụng khá và ghi chép kế toán là các yếu tố mà cả 3 phương pháp đều cho kết quả phù hợp với hầu hết các nghiên cứu trước đây là có tác động ngược chiều đến khả năng vỡ nợ; trong khi đó, 3 phương pháp có kết quả mâu thuẫn với nhau về các yếu tố: tuổi, ngành nghề kinh doanh, nghiên cứu thị trường, trình độ học vấn; các yếu tố liên quan đến khả năng sinh lời, cơ cấu vốn, hợp đồng tín dụng và các yếu tố khác liên quan đến hoạt động kinh doanh (thời gian trung bình lao động tại cơ sở kinh doanh, quan hệ nhà cung cấp, giá sản phẩm so với thị trường, rủi ro chi phí đầu vào) có chiều ảnh hưởng với xu hướng ngược với giả thiết; các yếu tố còn lại không có ý nghĩa thống kê
- Về so sánh 3 phương pháp: kết quả cho thấy hồi quy Logit phù hợp nhất trong phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ của khách hàng cá nhân tại Ngân hàng Hợp tác. Phương pháp MDA đem lại kết quả chấp nhận được. Trong khi đó, hồi quy Probit có hiệu quả thấp hơn khá rõ rệt so với 2 phương pháp trên.
Tài liệu tham khảo
- Acquah, H.D & Addo J. (2011), “Determinants of loan repayment performance of fishermen: Empirical evidence from Ghana”, Cercetări Agronomice în Moldova, Vol. 44, p. 89-97.
- Altman, E. I., G Marco, G. & Varetto, F. (1994), “Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)”, Journal of Banking & Finance, Vol. 18, p. 505-529.
- Arminger, G., Enache, D. & Bonne, T. (1997), “Analyzing Credit Risk Data: A Comparison of Logistic Discrimination, Classification Tree Analysis, and Feedforward Network”, Computational Statistics, Vol. 12, Issue 2, p. 293-310.
- Autio, M., Wilska, T-A., Kaartinen, R. & Lähteenmaa, J. (2009), “The Use of Small Instant Loans Among Young Adults – a Gateway to a Consumer Insolvency”, International Journal of Consumer Studies, Vol. 33, Issue 4, p. 407-415.
- Black, S. & Morgan, D. (1998), “Risk and the democratization of credit cards”, Research Paper 9815, Federal Reserve Bank of New York.
- Boyes, W. J., Hoffman, D. L. & Low, S. A. (2002), “An econometric analysis of the bank credit scoring problem”, Journal of Econometrics, Vol. 40, Issue 1, p. 3-14
- Breiman, L. (1984), Classification and regression trees, The Wadsworth statistics/probability series, Wadsworth International Group.
- Chapman, J.M (1990), “Factors Affecting Credit in personal Lending”, National Bureau of Economics Research.
- Crook, J. N. (2001), “The demand for household debt in the USA: evidence from the 1995 Survey of Consumer Finance”, Applied Financial Economics, Vol. 11 (1), p. 83-91.
- Chatterjee, S. & Barcun, S. (1970), “A Nonparametric Approach to Credit Screening”, Journal of the American Statistical Association, Vol. 65, p. 150-154.
- Deininger, K. & Liu, Y. (2009), “Determinants of repayment performance in Indian micro-credit groups”, Policy Research Working Paper Series 4885, The World Bank.
- Dinh, T. H. T. & Kleimeier, S. (2007), “A Credit Scoring Model for Vietnam’s Retail Banking Market”, International Review of Financial Analysis, Vol. 16, Issue 5, p. 571-495.
- Durand, D. (1941), “Risk Elements in Consumer Installment Financing”, National Bureau of Economic Research.
- Duygan-Bump, B. & Grant, C. (2009), “Household debt repayment behaviour: what role do institutions play?”, Economic Policy, Vol. 24, p. 107-140.
- Goldberger, A. S. (1964), Econometric Theory, New York, NY: Wiley
- Haile, M. S., Nyikal, R. & Wangia, S. (2012), actors Affecting Loan Repayment Performance of Smallholder Farmers: East Hararghe, Ethiopia, Lap Lambert Academic Publishing.
- Hand, D. J. (1981), Discrimination and classification, Wiley Series in Probability and Mathematical Statistics. Chichester: Wiley.
- Kocenda, E. & Vojtek, M. (2009), “Default Predictors and Credit Scoring Models for Retail Banking”, CESifo Working Paper, No. 2862.
- Kohansal, M.R. & Mansoori, H. (2009), Factors Affecting Loan Repayment Performance of Farmers in Khorsan-Razavi Province of Iran, Conference on International Research on Food Security, Natural Resource Management and Rural Development, University of Hamburg, 1-4.
- Lea, S. E. G., Webley, P., & Levine, R. M. (1993), “The economic psychology of consumer debt”, Journal of Economic Psychology, 14, 85-119
- Livingstone, S. M., & Lunt, P. K. (1992), “Predicting personal debt and debt repayment: Psychological, social and economic determinants”, Journal of Economic Psychology, 13(1), 111-134.
- Maddala, G. S. (1988), Introduction to Econometrics, Macmillan Pub Co.
- Onyeagocha, S. O. U., Chidebelu, S. A. N. D. & Okorji, E. C. (2012), “Determinants of Repayment of Loan Beneficiaries of Micro Finance Institutions in Southeast States of Nigeria”, International Journal of Agricultural Management and Development, Vol. 2(3), p. 1-9.
- Pham, T. T. T. & Lensink, R. (2008), “Household Borrowing in Vietnam: A Comparative Study of Default Risks of Formal, Informal and Semi-formal Credit”, Journal of Emerging Market Finance, Vol. 7, Issue 3, p. 237-261.
- Rosenberg, E. & Gleit, A. (1994), “Quantitative Methods in Credit Management: A Survey”, Operations Research, Vol. 42, p. 589-613.
- Sharma, M. & Zeller, M. (1997), “Repayment performance in group-based credit programs in Bangladesh: An empirical analysis”, World Development, Vol. 25, p. 1731-1742.
- Thomas, L. C. (2000), “A Survey of Credit and Behavioural Scoring: Forecasting Financial Risk of Lending to Consumers”, International Journal of Forecasting, Vol. 16, Issue 2, p. 149- 172.
- Ugbomeh, G. M. M., Achoja, F. O., Ideh V. & Ofuoku A. U. (2008), “Determinants of Loan Repayment Performance Among Women Self Help Groups in Bayelsa State, Nigeria”, Agriculturae Conspectus Scientificus, Vol. 73, p. 189-195.
- Vasanthi, P. & Raja, P. (2006), “Risk Management Model: an Empirical Assessment of the Risk of Default”, International Research Journal of Finance and Economics, Vol. 1, Issue 1.
- Zelizer, V.A. (1994), Pricing the Priceless Child: The Changing Social Value of Children, Princeton University Press
- Zocco, D.P. (1985), “A framework for expert systems in bank loan management”, Journal of commercial banking lending, Vol. 67, pp. 47-54.
- Özdemir, Ö. & Boran, L. (2004), “An Empirical Investigation on Consumer Credit Default Risk”, Turkish Economic Association Working Paper, 2004 / 20.
- Weber, R. & Musshoff, O. (2012), “Is agricultural microcredit really more risky? Evidence from Tanzania”, Agricultural Finance Review, Vol. 72, pp. 416-435.
- Wiginton, J. C. (1980), “A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior”, Journal of Finance and Quantitative Analysis, Vol. 15, p. 757–776.
[1] Ngân hàng Co-opBank, Email: quynt@co-opbank.vn
[2] Đại học Ngoại thương, Email: vd.nguyen@ftu.edu.vn
[3] VCBS, Email: nttoan@vcbs.com.vn
So sánh các phương pháp phân tích và kiểm định yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân: Trường hợp của Ngân hàng Hợp tác (Co-opBank)
(A comparison of models for factors affecting personal loan default: The Case of Co-opBank)
Ngô Tiến Quý[1]
Nguyễn Việt Dũng[2]
Nguyễn Thiện Toàn[3]
Tóm tắt
Bài viết áp dụng và so sánh 3 phương pháp phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân là: Phân tích phân biệt (Multiple Discriminant Analysis - MDA), hồi quy Logit và Probit. Dữ liệu được sử dụng là các khoản cấp tín dụng cá nhân tại ngân hàng Co-opBank, Chi nhánh Bắc Ninh giai đoạn 2013 – 2018, với mẫu nghiên cứu gồm 4.451 quan sát, trong đó nhóm không vỡ nợ là 3.996 và nhóm vỡ nợ là 455 quan sát. Kết quả cho thấy hồi quy Logit phù hợp nhất với mẫu dữ liệu. Phương pháp MDA đem lại kết quả chấp nhận được. Trong khi đó, hồi quy Probit có hiệu quả thấp hơn khá rõ rệt so với 2 phương pháp trên.
Từ khóa: Tín dụng khách hàng cá nhân, các yếu tố ảnh hưởng khả năng vỡ nợ, phân tích phân biệt, hồi quy Logit, hồi quy Probit.
Abstract
The paper applies and compares three methods of analyzing factors affecting personal loan default: Multiple Discriminant Analysis (MDA), Logit and Probit regressions. The data used comes from personal loans granted by Co-opBank’s Bac Ninh Branch for the period of 2013-2018, with a final sample including 3,996 non-default and 455 default observations. The results show that Logit regression is best suited to the data. The MDA method yields acceptable results but Probit regression has a significantly lower efficiency than the other two methods.
Keywords: Personal loan, Factors affecting default, MDA, Logit, Probit.
- Giới thiệu
Thị trường tín dụng ngân hàng đối với khách hàng cá nhân tại Việt Nam đang phát triển và có tiềm năng lớn trong tương lai khi mà nguồn vốn ngân hàng vẫn đang trong quá trình tiếp cận đến nhiều tầng lớp dân cư hơn. Với thu nhập từng bước gia tăng, nhiều cơ hội kinh doanh mở ra và tiêu dùng tăng lên, nhu cầu vay vốn nói riêng và sử dụng các dịch vụ ngân hàng nói chung của người dân tại Việt Nam đang tăng cao. Không chỉ tín dụng tiêu dùng, tín dụng cá nhân với mục đích sản xuất kinh doanh hộ gia đình cũng chứng kiến sự tăng trưởng mạnh mẽ trong giai đoạn này. Các ngân hàng đều muốn chiếm lĩnh thị trường này, tối đa hóa lợi nhuận nhưng cũng có chung lo ngại về rủi ro trong cho vay đối với đối tượng khách hàng cá nhân.
Ngân hàng gặp phải một bài toán khó giải quyết khi phải cân nhắc hồ sơ vay vốn từ các cá nhân để ra quyết định cho vay. Bên cạnh mục tiêu mở rộng thị trường, tăng trưởng doanh thu, ngân hàng phải thận trọng với các quyết định của mình và không thể dễ dàng chấp nhận cấp vốn cho mọi cá nhân có nhu cầu. Nếu như những khách hàng tốt mang về doanh số và thu nhập cho ngân hàng đều đặn thì một vài hợp đồng tín dụng vỡ nợ có thể khiến lợi nhuận sụt giảm tức thì. Bởi vậy, việc xác định được khả năng vỡ nợ của khách hàng ngay từ thời điểm trước khi hình thành quan hệ tín dụng giữa ngân hàng và người cần vốn ảnh hưởng trực tiếp đến hiệu quả kinh doanh của ngân hàng. Hiện nay, khi so với khách hàng doanh nghiệp, các mô hình định lượng đánh giá rủi ro vỡ nợ của khách hàng cá nhân chưa thực sự phát triển. Vấn đề đặt ra là cần có một mô hình đo lường rủi ro vỡ nợ của khách hàng cá nhân có đủ tính tin cậy và khả năng dự báo chính xác, nghĩa là, một mô hình cần được kiểm chứng qua thực nghiệm trên dữ liệu tại thị trường cụ thể như Việt Nam.
2.1. Các nghiên cứu thực nghiệm
2.1.1. Các nghiên cứu về khả năng vỡ nợ của khách hàng cá nhân trên thế giới
- Chapman (1940) đã đặt nền móng cho những nghiên cứu về yếu tố ảnh hưởng đến khả năng vỡ nợ của khách hàng cá nhân từ rất sớm và phân loại gồm: đặc điểm nhân khẩu học (tuổi tác, giới tính, gia đình…), đặc điểm nghề nghiệp, đặc điểm thu nhập, đặc điểm học vấn và đặc điểm khoản vay. Ngoài ra còn một yếu tố khác liên quan đến sự sẵn lòng trả nợ của khách hàng.
- Arminger & cộng sự (1997) sử dụng 3 phương pháp là phân tích phân biệt logistic (logistic discriminant analysis), phân tích CART và hệ thống tiếp thuận (feedforward network) trên bộ mẫu dữ liệu 8.163 quan sát trong 2 năm 1991 – 1992 ở một ngân hàng Đức. Kết quả cho thấy người trưởng thành, người có thâm niên công tác, người có ôtô, nữ giới và những người có gia đình có khả năng trả nợ tốt hơn.
- Vasanthi & Raja (2006) ước tính khả năng vỡ nợ liên quan đến thu nhập và các yếu tố khác với dữ liệu của Úc (Cục Thống kê Úc, ABS 2001) cho một mẫu gồm 3.431 hộ gia đình. Vasanthi & Raja chỉ ra rằng độ tuổi của khách hàng, thu nhập và các yếu tố nhân khẩu học là những yếu tố quan trọng ảnh hưởng đến khả năng vỡ nợ. Nghiên cứu của Crook (2001) cũng nhấn mạnh yếu tố về thu nhập, việc sở hữu nhà và quy mô hộ gia đình. Black & Morgan (1998) cũng chú ý tới các yếu tố xã hội và các yếu tố về nhân khẩu học của người được cấp tín dụng.
- Autio & cộng sự (2009) nghiên cứu việc sử dụng các khoản vay nóng ở Phần Lan. Khảo sát trực tuyến được tiến hành cho các đối tượng từ 18 đến 29 tuổi với các câu hỏi về tuổi tác, giới tính, tình hình tài chính, thu nhập, việc làm và tình trạng lao động cũng như cấu trúc gia đình. Các yếu tố ảnh hưởng đến số lượng các khoản vay là tình trạng nghề nghiệp, thu nhập và cơ cấu hộ gia đình. Giới tính dường như không có ảnh hưởng.
- Kocenda & Vojtek (2011) nghiên cứu một mẫu gồm 3.403 quan sát với 21 biến giải thích. Với 2 phương pháp hồi quy logistic và phân tích CART, kết quả cho thấy các đặc tính về tài chính và hành vi quan trọng trong giải thích khả năng vỡ nợ trong tín dụng tiêu dùng là: tài sản, trình độ học vấn, tình trạng hôn nhân, mục đích của khoản vay và thời gian có tài khoản ngân hàng.
- Bên cạnh những yếu tố cơ bản đã nêu, Lea & cộng sự (1993) thêm những yếu tố vĩ mô (kinh tế, xã hội) ảnh hưởng. Kohansal & Mansoori (2009) thêm về vấn đề rủi ro đạo đức và đặc điểm của cán bộ cho vay, Macana (2006) bổ sung yếu tố rủi ro tác nghiệp từ phía ngân hàng. Rodrigues (2008) đã tìm hiểu một số yếu tố chỉ tiêu bất thường mà người đi vay không dự đoán trước.
- Một số những nghiên cứu tìm ra kết quả có những mâu thuẫn so với hiểu biết thông thường. Livingston & Lunt (1992) đã cho thấy những người có thu nhập cao và ít con có khả năng mắc nợ cao hơn. Özdemir & Boran (2004) sử dụng hồ quy Logit nhị phân (logistic binary regression) nghiên cứu dữ liệu từ một ngân hàng Thổ Nhĩ Kỳ. Tác giả không thấy có tác động của các biến nhân khẩu học tới khả năng vỡ nợ, trừ biến tình trạng nơi ở. Trong khi đó, các đặc điểm về tài chính có thể giải thích tốt khả năng vỡ nợ, trong đó phải kể tới lãi suất và thời hạn vay. Thời hạn vay càng dài và lãi suất càng cao thì khả năng hoàn thành đúng nghĩa vụ thanh toán nợ của khách hàng càng giảm.
2.1.2. Các nghiên cứu về khả năng vỡ nợ KHCN tại Việt Nam
- Các nghiên cứu về trường hợp Việt Nam còn rất hạn chế về số lượng. Dinh & Kleimeier (2007) sử dụng bộ dữ liệu gồm 56.037 quan sát với hồi quy logistic và phương pháp stepwise để chọn ra 16 yếu tố ảnh hưởng. Một số yếu tố được nhấn mạnh là thâm niên giao dịch với ngân hàng, giới tính, số khoản vay và thời hạn vay.
- Pham & Lensink (2008) sử dụng dữ liệu hộ gia đình Việt Nam xem xét sự khác biệt về khả năng vỡ nợ trong tín dụng chính thức, phi chính thức và bán chính thức. Từ đó, nhóm đánh giá các yếu tố quyết định khả năng vỡ nợ đối với 3 loại trên. Thời hạn cho vay và lãi suất cho vay và vai trò của người thân trong cho vay không chính thức (làm giảm tỷ lệ vỡ nợ) là ba yếu tố ảnh hưởng được nhấn mạnh ở thị trường Việt Nam.
2.2. Tổng hợp các yếu tố ảnh hưởng đến khả năng vỡ nợ của KHCN
2.2.1. Đặc điểm nhân khẩu học
Đặc điểm nhân khẩu học bao gồm những yếu tố về bản thân khách hàng:
- Độ tuổi: Đây là yếu tố quan trọng và có mặt trong hầu hết các nghiên cứu thực nghiệm nêu trên. Chapman (1940), Thomas (2000), Boyes & cộng sự (2002), Kohansal & Mansoori (2009) cũng như một số nghiên cứu trước đây đã đưa ra kết luận rằng độ tuổi người được cấp tín dụng càng lớn thì khả năng trả nợ của họ càng cao. Khách hàng trẻ tuổi có xu hướng bị ảnh hưởng xấu bởi gánh nặng của các khoản tín dụng và các yếu tố liên quan đến độ tuổi trẻ cũng sẽ làm giảm khả năng trả nợ. Người lớn tuổi có những ràng buộc về uy tín, kinh nghiệm sống nhiều hơn; trong khi về rủi ro nghề nghiệp nói chung thấp hơn. Ngược lại, vẫn luôn có những ý kiến trái chiều như: sức khỏe thấp hơn, số người phụ thuộc lớn hơn sẽ làm độ tuổi ảnh hưởng ngược chiều với khả năng trả nợ. Đối với hộ gia đình có hoạt động kinh doanh, độ tuổi có thể là yếu tố bao hàm độ tuổi cũng như cả tình trạng sức khỏe của người đi vay và có thể liệt kê thêm tuổi nghề của lao động do người đi vay thuê để tiến hành hoạt động kinh doanh hộ gia đình.
- Giới tính: Zelizer (1994) cho thấy sự quan trọng của yếu tố giới tính. Nam giới và nữ giới có sự khác nhau về việc tiếp nhận, sử dụng cũng như quan niệm về giá trị tiền bạc. Chapman (1990), Weber & Musshoff (2012) chỉ ra rằng nữ giới có khả năng ít tạo ra các rủi ro tín dụng hơn là nam giới do họ ít phạm tội, cá tính thận trọng, và ít gây ra các rủi ro đạo đức.
- Tình trạng hôn nhân: yếu tố này gây ra những tranh cãi lớn hơn xung quanh nó. Lập gia đình có thể tạo ra những nền tảng cho khả năng trả nợ như khách hàng sẽ chín chắn, ngại rủi ro hơn; nhưng cũng đem lại những ràng buộc về chăm lo gia đình và những người phụ thuộc. Nghiên cứu của Duygan-Bump & Grant (2008) không đề cao ảnh hưởng của biến này.
2.2.2. Đặc điểm nghề nghiệp
- Những cá nhân có nghề nghiệp ổn định (công chức Nhà nước, nhân viên văn phòng), có vị trí xã hội (giám đốc, chủ tịch), có kinh nghiệm lâu năm hoặc trong những lĩnh vực đòi hỏi chất xám cao hay có tay nghề vững vàng (kế toán, kỹ sư, bác sĩ) có khả năng tạo ra nguồn thu nhập ổn định và cao hơn những lĩnh vực nghề nghiệp khác, từ đó, khả năng trả nợ đúng hạn là cao hơn. Kohansal & Mansoori (2009) nghiên cứu dữ liệu với khách hàng là nông dân tại tỉnh Khorasan-Razavi (Iran) và chỉ ra những nông dân có kinh nghiệm lâu năm hơn là những người có tỷ lệ trả nợ cao hơn. Trong một nghiên cứu tương tự, Acquah & Addo (2011) sử dụng dữ liệu là số năm kinh nghiệm của các ngư dân tại Ghana nhưng lại không tìm thấy ý nghĩa thống kê về ảnh hưởng của biến số này.
- Đối với hoạt động kinh doanh hộ gia đình, đặc điểm nghề nghiệp được coi là bao hàm thêm nhiều yếu tố (sẽ được phân tích, kiểm định trong mục IV và V) như thời gian trung bình của lao động tại cơ sở kinh doanh, khả năng tổ chức sản xuất kinh doanh, ngành nghề kinh doanh, kinh nghiệm sản xuất kinh doanh, kế hoạch kinh doanh, khách hàng sử dụng dịch vụ tại các TCTD khác, quan hệ với nhà cung cấp, công tác nghiên cứu thị trường, công tác ghi chép kế toán, kênh phân phối, thâm niên quan hệ với các TCTD, việc sở hữu cơ sở kinh doanh…
2.2.3. Đặc điểm trình độ học vấn
- Yếu tố về trình độ học vấn nhận được rất nhiều những ý kiến ủng hộ với giả thuyết rằng những người có học vấn cao sẽ có khả năng trả nợ cao hơn. Yếu tố này tương quan với những yếu tố về thu nhập, nghề nghiệp… và đặc biệt liên quan với ý chí trả nợ của khách hàng (Haile & cộng sự, 2012).
2.2.4. Đặc điểm thu nhập
- Là yếu tố cơ bản cấu thành nền tảng trả nợ của khách hàng, hầu hết các nghiên cứu đều chỉ ra tầm ảnh hưởng quan trọng của yếu tố này. Thu nhập cao và ổn định sẽ giúp khả năng trả nợ nâng cao. Tuy nhiên, tương quan cao lại không dễ tìm thấy trong thực nghiệm với những điều kiện ảnh hưởng khác như: ý chí trả nợ của khách hàng, cán bộ tín dụng quá chủ quan trong quá trình quyết định cho vay…
- Đối với cá nhân, hộ gia đình có hoạt động kinh doanh, đặc điểm thu nhập có thể liên quan nhiều chi tiết như: tỷ lệ vốn tự có, khả năng sinh lời, biến động giá sản phẩm, chi phí đầu vào, giá sản phẩm so với thị trường, tăng trưởng doanh thu…
2.2.5. Đặc điểm khoản cấp tín dụng
- Ba yếu tố chính của một khoản cấp tín dụng là kích cỡ khoản tín dụng, lãi suất, và thời hạn cấp tín dụng. Các giả thuyết được chấp nhận phổ biến là: kích cỡ khoản vay càng thấp, lãi suất cho vay càng thấp, thời hạn khoản vay càng dài sẽ khiến khả năng trả nợ càng cao.
- Sharma & Zeller (1997) và Kohansal & Mansoori (2009) có những kết luận ngược lại về kích cỡ khoản vay khi kích cỡ càng lớn khả năng trả nợ càng cao. Những nghiên cứu trên giải thích rằng các khoản vay lớn thường để đầu tư kinh doanh còn khoản vay nhỏ thường thuần cho chi tiêu dùng cá nhân. Hơn nữa, khoản vay lớn khiến khách hàng thận trọng khi sử dụng khoản tín dụng và tập trung cố gắng hoàn thành trả nợ. Về lãi suất cấp tín dụng, những tranh luận ngược chiều là ít hơn. Các nghiên cứu gần đây của Deininge & Liu (2009), Ugbomeh & cộng sự (2008), và Onyeagocha & cộng sự (2012) cũng cho những kết quả tương tự với giả thuyết. Ảnh hưởng của thời hạn cấp tín dụng có những kết quả khác nhau trong các nghiên cứu. Trong khi Chapman (1940) chỉ ra tín dụng ngắn hạn (một năm trở xuống) sẽ giúp khả năng trả nợ cao hơn, Onyeagocha & cộng sự (2012) không tìm thấy ảnh hưởng của yếu tố này.
2.2.6. Thông tin bất cân xứng
- Thông tin bất cân xứng trong hoạt động cấp tín dụng bao gồm rủi ro lựa chọn đối nghịch và rủi ro đạo đức của khách hàng. Rủi ro lựa chọn đối nghịch (Adverse selection) xảy ra khi những khách hàng có khả năng trả nợ thấp lại tích cực thể hiện những điểm tốt và được ngân hàng tin tưởng, trong khi những khách hàng có khả năng trả nợ cao không nỗ lực tìm kiếm vốn tín dụng lại không được ngân hàng đánh giá cao. Rủi ro đạo đức khách hàng (Moral hazard) xảy ra khi khách hàng sử dụng khoản tín dụng không đúng với mục đích ban đầu và ngân hàng không kiểm soát được điều đó. Thông tin bất cân xứng đem lại những đánh giá cũng như những quyết định sai, ảnh hưởng đến rủi ro vỡ nợ.
2.2.7. Rủi ro tác nghiệp từ ngân hàng
- Đây là yếu tố khó xác định và chưa được nghiên cứu nhiều, chỉ được nêu lên như một giả thuyết cần lưu ý (Macana, 2006). Trong quá trình thẩm định tín dụng, ngân hàng dễ chịu những rủi ro tác nghiệp từ cán bộ tín dụng – năng lực yếu, bất cẩn, tư lợi cá nhân, hoặc từ hệ thống chấm điểm tín dụng – không chính xác, hợp lý, hiệu quả.
2.2.8. Sự kiện bất thường
- Tín dụng cá nhân có những đặc trưng riêng so với tín dụng doanh nghiệp. Khả năng vỡ nợ của khách hàng cá nhân chịu sự biến động và ảnh hưởng lớn từ những sự kiện xảy ra trong đời sống của khách hàng đó. Những sự kiện bất thường (ốm đau, tai nạn, mất việc…) không nằm trong dự kiến sẽ khiến tình hình tài chính, sức khỏe, cũng như tâm lý của khách hàng bị ảnh hưởng.
3.1. Phương pháp phân tích phân biệt (Multiple Discriminant Analysis - MDA)
MDA cho phép phân loại các trường hợp thành các nhóm, phân tích sự khác biệt giữa các nhóm. Phương pháp MDA trên thực tế có khả năng phân biệt thành nhiều hơn 2 nhóm, số hàm khác biệt sẽ ít hơn số nhóm khác biệt 1 đơn vị. Ở đây, phương pháp phân tích phân biệt tìm một hàm tuyến tính (hàm phân biệt – discriminant function) của các biến tài chính, thị trường để phân biệt giữa hai nhóm rủi ro vỡ nợ cao và thấp (Durand, 1941). Sự khác biệt giữa hai nhóm được đo lường bằng trung bình của các biến phân biệt – chỉ số z.
3.2. Phương pháp hồi quy Logit
- Phương pháp hồi quy Logit (Maddala, 1984) là một mô hình nhị thức (biến phụ thuộc là biến nhị phân, chỉ có thể nhận hai giá trị là 0 hoặc 1). Mô hình này được ứng dụng rộng rãi trong phân tích kinh tế nói chung và rủi ro tín dụng nói riêng. Ở đây, hồi quy logit được dùng để đánh giá khả năng vỡ nợ (có hoặc không tương ứng với 0 hoặc 1) dựa trên các yếu tố ảnh hưởng.
Mô hình không có giả thiết về phân phối của các biến độc lập, các biến độc lập định tính thông qua việc thiết lập biến giả có thể chuyển thành định lượng. Các chỉ tiêu thông qua đó có thể được lượng hóa nhằm so sánh, phân loại và xếp hạng. Wiginton (1980) so sánh hồi quy Logit với phương pháp MDA và kết luận hồi quy Logit đem lại những kết quả phân loại tốt hơn trong việc chấm điểm tín dụng. Việc kiểm định thống kê không phức tạp và có thể điều chỉnh hàm phi tuyến dễ dàng cũng là những ưu điểm của phương pháp.
3.2. Phương pháp hồi quy Probit
Phương pháp này được sử dụng đầu tiên bởi Goldberger (1964). Về bản chất, phương pháp Probit và Logit giống nhau và đều thuộc dạng mô hình hồi quy, dựa trên phương pháp ước lượng hợp lý cực đại (Maximum likelihood). Điều khác nhau là mô hình Probit dựa trên hàm phân phối chuẩn chuẩn hóa, trong khi mô hình Logit dựa trên giả định hàm phân phối logistic chuẩn.
3.3. Các phương pháp khác
Trong số các phương pháp mới để đánh giá khả năng vỡ nợ, nổi bật là mô hình mạng nơ-ron. Mô hình mạng nơ-ron sử dụng nguyên lý tính toán song song bao gồm nhiều quá trình đơn giản được kết nối với nhau. Trong mỗi quá trình này, các phép tính được thực hiện đơn giản, do một nơ-ron đảm trách. Nhưng chính những nơ-ron đơn giản này lại có thể giải quyết được những nhiệm vụ rất phức tạp khi được kết nối, tổ chức với nhau một cách hợp lý. Mạng nơ-ron có thể bắt chước và nhận thức được các trạng thái thực đối với dữ liệu đầu vào không đầy đủ hoặc dữ liệu với một số lượng biến rất lớn. Kỹ thuật này đặc biệt phù hợp với mô hình dự báo mà không có công thức toán học nào được biết để miêu tả mối quan hệ giữa các biến đầu vào và đầu ra. Phương pháp này có ít giả định hơn, phù hợp nhất khi các khoản cấp tín dụng là không đồng nhất (Rosenberg & Gleit, 1994). Tuy nhiên, việc sử dụng phương pháp mạng nơ-ron phức tạp hơn nhưng không đảm bảo hiệu quả hơn so với các phương pháp truyền thống (Altman & cộng sự, 1994).
Ngoài ra, các kỹ thuật được sử dụng trong việc xây dựng mô hình phân tích tín dụng cá nhân khác có thể kể đến là: phi tham số (Chatterjee & Barcun, 1970), lập trình toán (Hand, 1981), mô hình chuỗi Markov, phân vùng đệ quy (Breiman, 1984), hệ thống chuyên gia (Zocco, 1985), giải thuật di truyền, mô hình độc lập có điều kiện, mô hình cơ cấu theo lý thuyết quyền chọn…
- Mẫu, dữ liệu và phương pháp nghiên cứu
Bài viết so sánh các phương pháp phân tích và kiểm định yếu tố ảnh hưởng đến khả năng vỡ nợ sử dụng dữ liệu từ các khoản cấp tín dụng cá nhân tại ngân hàng Co-opBank Chi nhánh Bắc Ninh giai đoạn 2013 - 2018. Đối với mỗi khoản tín dụng, dữ liệu được thu thập tại t-1, với t là thời điểm thực hiện nghĩa vụ hoàn trả để xác định khách hàng có hoàn trả được hay không. Dữ liệu thu thập từ Chi nhánh gồm 4.566 khoản tín dụng.
Từ các dữ liệu có sẵn tại Chi nhánh, trên cơ sở các yếu tố ảnh hưởng đã trình bày trên đây, 28 yếu tố được lọc ra để đưa vào phân tích và kiểm định. Các biến định tính được biến đổi sang biến giả định lượng. Sau đó, mẫu được chia thành 2 nhóm: vỡ nợ và không vỡ nợ. Vỡ nợ ở đây được phân loại như các trường hợp tạo nợ xấu theo Ngân hàng Nhà nước – trả nợ gốc hoặc/và lãi chậm trên 90 ngày. Cuối cùng, các giá trị trội hẳn và có nghi vấn sai sót được loại bỏ. Sau toàn bộ quá trình thu thập và xử lý dữ liệu, mẫu cuối cùng còn lại 4.451 quan sát, trong đó, nhóm không vỡ nợ là 3.996 quan sát và 455 quan sát vỡ nợ. Mỗi quan sát bao gồm 28 yếu tố ảnh hưởng cần phân tích và kiểm định. Nội dung các yếu tố ảnh hưởng được trình bày trong Bảng 1.
Bảng 1. Các yếu tố ảnh hưởng đến khả năng vỡ nợ KHCN
Nhóm yếu tố |
Ký hiệu yếu tố |
Nội dung yếu tố |
Đặc điểm nhân khẩu học |
tuoi_nghe_tb_cua_lao_dong |
Số năm kinh nghiệm làm việc trung bình của lao động |
Tuoi |
Tuổi |
|
suc_khoe_kh |
Sức khỏe |
|
Đặc điểm nghề nghiệp |
tg_tb_lao_dong_tai_cskd |
Thời gian trung bình của lao động tại cơ sở kinh doanh |
to_chuc_sxkd |
Khả năng tổ chức sản xuất kinh doanh |
|
nganh_nghe_kd |
Ngành nghề kinh doanh |
|
su_dung_dv_cua_tctd_khac |
Khách hàng sử dụng dịch vụ tại các TCTD khác |
|
quan_he_nha_cung_cap |
Quan hệ với nhà cung cấp |
|
nghien_cuu_thi_truong |
Công tác nghiên cứu thị trường |
|
ghi_chep_ke_toan |
Công tác ghi chép kế toán |
|
kinh_nghiem_sxkd |
Kinh nghiệm sản xuất kinh doanh |
|
khkd_2_nam |
Kế hoạch kinh doanh 2 năm |
|
kenh_phan_phoi |
Kênh phân phối |
|
tg_quan_he_tctd |
Thâm niên quan hệ với các TCTD |
|
so_huu_dia_diem_kd |
Việc sở hữu cơ sở kinh doanh |
|
Đặc điểm trình độ học vấn |
trinh_do_hoc_van |
Trình độ học vấn |
Đặc điểm thu nhập |
lntt_tren_von_tu_co |
LNTT trên vốn tự có |
ty_le_von_tu_co |
Tỷ lệ vốn tự có |
|
ln_tren_doanh_thu |
Lợi nhuận biên |
|
xu_huong_bien_dong_gia_sp |
Biến động giá sản phẩm |
|
rui_ro_chi_phi_dau_vao |
Chi phí đầu vào |
|
gia_sp_so_voi_tt |
Giá sản phẩm so với thị trường |
|
tang_truong_doanh_thu |
Tăng trưởng doanh thu |
|
Đặc điểm khoản cấp tín dụng |
muc_de_nghi_vay_von |
Mức đề nghị vay vốn |
thoi_han_vay |
Thời hạn vay |
|
tinh_trang_no |
Khách hàng chịu những khoản nợ khác |
|
Thông tin bất cân xứng |
chap_hanh_quy_dinh_kd |
Khách hàng nghiêm túc chấp hành quy định kinh doanh |
doi_tuong_kh |
Mức độ thân thiết và uy tín của khách hàng |
Thống kê mô tả về các yếu tố ảnh hưởng được trình bày trong bảng 2.
Bảng 2. Thống kê mô tả về các yếu tố ảnh hưởng
Nhóm yếu tố |
Yếu tố |
Tất cả KH (4451) |
KH không vỡ nợ (3996) |
KH vỡ nợ (455) |
|||
Trung bình |
Độ lệch chuẩn |
Trung bình |
Độ lệch chuẩn |
Trung bình |
Độ lệch chuẩn |
||
Đặc điểm nhân khẩu học |
tuoi_nghe_tb_cua_lao_dong |
3,581 |
1,009 |
3,581 |
1,006 |
3,585 |
1,037 |
Tuoi |
3,371 |
1,184 |
3,356 |
1,202 |
3,508 |
0,995 |
|
suc_khoe_kh |
1,970 |
0,179 |
1,977 |
0,148 |
1,908 |
0,339 |
|
Đặc điểm nghề nghiệp |
tg_tb_lao_dong_tai_cskd |
3,842 |
1,824 |
3,842 |
1,824 |
3,842 |
1,824 |
to_chuc_sxkd |
2,173 |
0,408 |
2,177 |
0,397 |
2,138 |
0,493 |
|
nganh_nghe_kd |
8,493 |
4,543 |
8,520 |
4,562 |
8,262 |
4,370 |
|
su_dung_dv_cua_tctd_khac |
1,600 |
1,015 |
1,644 |
0,992 |
1,215 |
1,131 |
|
quan_he_nha_cung_cap |
1,217 |
0,422 |
1,201 |
0,408 |
1,354 |
0,510 |
|
nghien_cuu_thi_truong |
1,328 |
0,550 |
1,327 |
0,552 |
1,338 |
0,535 |
|
ghi_chep_ke_toan |
2,132 |
0,429 |
2,147 |
0,431 |
2,000 |
0,393 |
|
kinh_nghiem_sxkd |
1,949 |
0,227 |
1,962 |
0,190 |
1,831 |
0,414 |
|
khkd_2_nam |
1,939 |
0,271 |
1,958 |
0,201 |
1,769 |
0,576 |
|
kenh_phan_phoi |
1,945 |
0,273 |
1,950 |
0,261 |
1,892 |
0,357 |
|
tg_quan_he_tctd |
2,551 |
1,658 |
2,474 |
1,484 |
3,223 |
2,655 |
|
so_huu_dia_diem_kd |
1,952 |
0,226 |
1,962 |
0,205 |
1,862 |
0,346 |
|
Đặc điểm trình độ học vấn |
trinh_do_hoc_van |
0,253 |
0,613 |
0,246 |
0,607 |
0,308 |
0,655 |
Đặc điểm thu nhập |
lntt_tren_von_tu_co |
1,418 |
1,701 |
1,366 |
1,588 |
1,872 |
2,440 |
ty_le_von_tu_co |
0,365 |
0,165 |
0,360 |
0,163 |
0,412 |
0,174 |
|
ln_tren_doanh_thu |
0,208 |
0,059 |
0,208 |
0,059 |
0,211 |
0,054 |
|
xu_huong_bien_dong_gia_sp |
2,306 |
0,722 |
2,309 |
0,709 |
2,277 |
0,833 |
|
rui_ro_chi_phi_dau_vao |
1,650 |
0,639 |
1,668 |
0,634 |
1,492 |
0,660 |
|
gia_sp_so_voi_tt |
1,352 |
0,615 |
1,357 |
0,621 |
1,308 |
0,553 |
|
tang_truong_doanh_thu |
2,226 |
0,616 |
2,245 |
0,597 |
2,062 |
0,742 |
|
Đặc điểm khoản cấp tín dụng |
muc_de_nghi_vay_von |
3,736 |
2,235 |
3,812 |
2,343 |
3,062 |
0,426 |
thoi_han_vay |
0,458 |
0,655 |
0,473 |
0,671 |
0,323 |
0,468 |
|
tinh_trang_no |
0,070 |
0,266 |
0,077 |
0,277 |
0,015 |
0,123 |
|
Thông tin bất cân xứng |
chap_hanh_quy_dinh_kd |
1,208 |
0,436 |
1,209 |
0,428 |
1,200 |
0,503 |
doi_tuong_kh |
1,920 |
0,276 |
1,925 |
0,269 |
1,877 |
0,329 |
Bài viết áp dụng 3 phương pháp để phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân: Phân tích phân biệt đa biến (Multiple Discriminant Analysis – MDA), phương pháp hồi quy Logit và phương pháp hồi quy Probit.
- Kết quả và thảo luận
5.1. Phương pháp MDA
Các biến độc lập, ngoại trừ ln_tren_doanh_thu (0,23), tuoi_nghe_tb_cua_lao_dong (0,944), chap_hanh_quy_dinh_kd (0,687), nganh_nghe_kd (0,251), xu_huong_bien_dong_gia_ sp (0,365), to_chuc_sxkd (0,055), nghien_cuu_thi_truong (0,682), đều có p-value nhỏ hơn 0,05, vì vậy có khả năng là các nhân tố phân biệt mang nhiều ý nghĩa thống kê. Các biến có giá trị Wilks’ l tương ứng nhỏ sẽ có nhiều ý nghĩa giải thích cho khả năng vỡ nợ.
Bảng 3. Kết quả kiểm định và ước lượng hàm phân biệt
Nhóm yếu tố |
Yếu tố |
Wilk’ l |
F |
Xác suất |
Hệ số hàm phân biệt |
Đặc điểm nhân khẩu học |
tuoi_nghe_tb_cua_lao_dong |
1 |
0,005 |
0,944 |
|
Tuoi |
0,998 |
6,73 |
0,01 |
-0,152 |
|
suc_khoe_kh |
0,986 |
63,175 |
0 |
-2,225 |
|
Đặc điểm nghề nghiệp |
tg_tb_lao_dong_tai_cskd |
0,93 |
336,598 |
0 |
-0,3 |
to_chuc_sxkd |
0,999 |
3,677 |
0,055 |
0,734 |
|
nganh_nghe_kd |
1 |
1,317 |
0,251 |
|
|
su_dung_dv_cua_tctd_khac |
0,984 |
74,097 |
0 |
0,367 |
|
quan_he_nha_cung_cap |
0,988 |
53,994 |
0 |
-1,332 |
|
nghien_cuu_thi_truong |
1 |
0,167 |
0,682 |
|
|
ghi_chep_ke_toan |
0,989 |
48,492 |
0 |
0,917 |
|
kinh_nghiem_sxkd |
0,969 |
141,76 |
0 |
1,093 |
|
khkd_2_nam |
0,955 |
207,666 |
0 |
1,206 |
|
kenh_phan_phoi |
0,996 |
18,622 |
0 |
-0,255 |
|
tg_quan_he_tctd |
0,981 |
84,882 |
0 |
-0,235 |
|
so_huu_dia_diem_kd |
0,982 |
83,141 |
0 |
1,014 |
|
Đặc điểm trình độ học vấn |
trinh_do_hoc_van |
0,999 |
4,112 |
0,043 |
0,902 |
Đặc điểm thu nhập |
lntt_tren_von_tu_co |
0,992 |
36,359 |
0 |
-0,387 |
ty_le_von_tu_co |
0,991 |
41,183 |
0 |
-2,353 |
|
ln_tren_doanh_thu |
1 |
1,44 |
0,23 |
|
|
xu_huong_bien_dong_gia_sp |
1 |
0,821 |
0,365 |
|
|
rui_ro_chi_phi_dau_vao |
0,993 |
31,161 |
0 |
1,424 |
|
gia_sp_so_voi_tt |
0,999 |
2,667 |
0,102 |
|
|
tang_truong_doanh_thu |
0,992 |
36,463 |
0 |
0,312 |
|
Đặc điểm khoản cấp tín dụng |
muc_de_nghi_vay_von |
0,99 |
46,564 |
0 |
0,179 |
thoi_han_vay |
0,995 |
21,496 |
0 |
0,321 |
|
tinh_trang_no |
0,995 |
21,709 |
0 |
0,899 |
|
Thông tin bất cân xứng |
chap_hanh_quy_dinh_kd |
1 |
0,163 |
0,687 |
|
doi_tuong_kh |
0,997 |
12,368 |
0 |
-0,538 |
Độ tương quan chính tắc (Canonical Correlation) h = 0,594. h2 = 0,353 chỉ ra tương quan giữa các biến độc lập với biến phụ thuộc là 35,3%. Giá trị Wilks' l thấp (0,648) và mức ý nghĩa cao (0,00) chứng minh có sự khác biệt giữa các giá trị trung bình của mỗi nhóm, hay nói cách khác, mô hình có ý nghĩa thống kê. Cột cuối cho phép xác định hàm tính chỉ số z của Bảng 3 hệ số hàm phân biệt, Ngoài ra, kết quả cũng cho phép xác định điểm ngưỡng để phân loại như trong Bảng 4.
Bảng 4. Trọng tâm nhóm và điểm ngưỡng
Nhóm không vỡ nợ |
Z = 0,249 |
Điểm ngưỡng= |
Nhóm vỡ nợ |
Z = -2,186 |
Kết quả, những quan sát có chỉ số z lớn hơn điểm ngưỡng được dự báo thuộc nhóm không vỡ nợ, còn lại thuộc nhóm vỡ nợ.
5.2. Phương pháp hồi quy Logit
Trước hết, kiểm định Hosmer-Lemeshow và kiểm định likelihood ratio được sử dụng để kiểm tra tính định dạng đúng của mô hình. Mô hình hợp lý là mô hình được định dạng đúng, việc định dạng sai có thể dẫn đến các sai lệch và làm kết quả dự báo bị méo mó.
H0 của kiểm định Hosmer-Lemeshow là không có sự khác biệt giữa giá trị thực tế và dự báo. H1 là có sự khác biệt đáng kể giữa giá trị thực tế và dự báo. Kết quả kiểm định cho thấy chi-square có giá trị 10,154, xác suất là 0,273, không thể bác bỏ H0. Như vậy mô hình có định dạng phù hợp.
Kiểm định likelihood-ratio cho thấy giá trị -2LL là 831,593 tương đối thấp, chỉ ra mức độ phù hợp tương đối của mô hình. Nagelkerke R2 là 0,536, cho thấy tương quan giữa các biến độc lập và phụ thuộc là 53,6%. Đây là mức không cao nhưng hoàn toàn có thể chấp nhận được.
Hồi quy Logit dùng kiểm định Wald để kiểm định các hệ số hồi quy thay vì kiểm định thống kê t (t-statistic) trong mô hình hồi quy tuyến tính thông thường.
Bảng 5. Kết quả ước lượng hồi quy Logit
Nhóm yếu tố |
Yếu tố |
Hệ số |
Sai số chuẩn |
Kiểm định Wald |
Xác suất |
Đặc điểm nhân khẩu học |
tuoi |
-0,332** |
0,135 |
6,035 |
0,014 |
Đặc điểm nghề nghiệp |
tg_tb_lao_dong_tai_cskd |
0,534*** |
0,042 |
159,548 |
0 |
to_chuc_sxkd |
-1,603*** |
0,242 |
43,77 |
0 |
|
su_dung_dv_cua_tctd_khac |
-2,436*** |
0,4 |
37,118 |
0 |
|
quan_he_nha_cung_cap |
2,165*** |
0,209 |
107,222 |
0 |
|
nghien_cuu_thi_truong |
-0,47*** |
0,148 |
10,111 |
0,001 |
|
ghi_chep_ke_toan |
-1,853*** |
0,218 |
72,199 |
0 |
|
tg_quan_he_tctd |
6,611*** |
0,478 |
191,005 |
0 |
|
Đặc điểm trình độ học vấn |
trinh_do_hoc_van |
0,195** |
0,132 |
2,163 |
0,014 |
Đặc điểm thu nhập |
lntt_tren_von_tu_co |
0,967*** |
0,059 |
273,165 |
0 |
ty_le_von_tu_co |
5,334*** |
0,598 |
79,523 |
0 |
|
ln_tren_doanh_thu |
3,571*** |
1,273 |
7,862 |
0,005 |
|
rui_ro_chi_phi_dau_vao |
-31,399*** |
2,761 |
129,322 |
0 |
|
gia_sp_so_voi_tt |
22,637*** |
2,988 |
57,401 |
0 |
|
tang_truong_doanh_thu |
-4,221*** |
0,72 |
34,376 |
0 |
|
Đặc điểm khoản cấp tín dụng |
muc_de_nghi_vay_von |
-0,138*** |
0,046 |
8,777 |
0,003 |
thoi_han_vay |
-1,384*** |
0,186 |
55,197 |
0 |
|
tinh_trang_no |
-2,079*** |
0,408 |
26,024 |
0 |
***, **: có ý nghĩa thống kê lần lượt ở mức 1% và 5%
5.3. Phương pháp hồi quy Probit
Kết quả kiểm định Hosmer-Lemeshow cho thấy xác suất là 0,065 vượt 0,05 nên không thể bác bỏ H0, mô hình có định dạng phù hợp.
Hệ số hồi quy của các yếu tố được đưa vào mô hình đều có ý nghĩa thống kê với p-value nhỏ hơn 0,05. Hệ số R2 cho thấy các biến độc lập giải thích được 35,06% biến động của biến phụ thuộc.
Bảng 6. Kết quả ước lượng mô hình Probit
Nhóm yếu tố |
Yếu tố |
b |
Xác suất |
Đặc điểm nhân khẩu học |
tuoi_nghe_tb_cua_lao_dong |
-0,217*** |
0 |
tuoi |
0,163*** |
0 |
|
suc_khoe_kh |
-0,284 |
0,15 |
|
Đặc điểm nghề nghiệp |
tg_tb_lao_dong_tai_cskd |
0,279*** |
0 |
to_chuc_sxkd |
-0,545*** |
0 |
|
su_dung_dv_cua_tctd_khac |
-0,357*** |
0 |
|
kinh_nghiem_sxkd |
-1,077*** |
0 |
|
cong_nghiep |
0,412*** |
0 |
|
dich_vu |
0,307** |
0,01 |
|
tg_quan_he_tctd |
0,198*** |
0 |
|
so_huu_dia_diem_kd |
-1,219*** |
0 |
|
Đặc điểm trình độ học vấn |
trinh_do_hoc_van |
-0,136** |
0,049 |
Đặc điểm thu nhập |
lntt_tren_von_tu_co |
0,332*** |
0 |
ty_le_von_tu_co |
2,085*** |
0 |
|
ln_tren_doanh_thu |
1,431** |
0,023 |
|
gia_sp_so_voi_tt |
0,422*** |
0 |
|
tang_truong_doanh_thu |
-0,381*** |
0 |
|
Đặc điểm khoản cấp tín dụng |
muc_de_nghi_vay_von |
-0,137*** |
0 |
tinh_trang_no |
-1,162*** |
0 |
|
Thông tin bất cân xứng |
chap_hanh_quy_dinh_kd |
0,325*** |
0,004 |
***, **: có ý nghĩa thống kê lần lượt ở mức 1% và 5%
5.4. So sánh các phương pháp
Bảng 7. Khả năng giải thích của 3 phương pháp
Phương pháp |
MDA |
Logit |
Probit |
Pseudo |
35,28% |
53,60% |
35,06% |
Dự đoán đúng số người vỡ nợ |
56,9% |
52,31% |
27,03% |
Dự đoán đúng số người không vỡ nợ |
97,4% |
97,95% |
98,5% |
Khả năng dự đoán đúng tổng thể |
93,30% |
93,28% |
91,19% |
Kết quả trong bảng 7 cho thấy, căn cứ vào giá trị R2, phương pháp Logit có sức giải thích lớn nhất (53,6%). 2 phương pháp MDA và Probit ở mức thấp hơn rõ rệt, lần lượt có sức giải thích là 35,28% và 35,06%.
Phương pháp MDA cho kết quả dự đoán đúng số người vỡ nợ cao nhất với tỷ số 259/455 người (56,9%). Phương pháp Probit dự đoán đúng số người không vỡ nợ cao nhất với 3936/3996 người (98,5%).
Khả năng dự báo tổng thể của phương pháp Probit là 91,19%, thấp hơn 2 phương pháp kia. Cụ thể, phương pháp MDA có khả năng dự báo đúng tổng thể là 93,30%. Phương pháp Logit dự báo đúng 3914 người không vỡ nợ và 238 người vỡ nợ, tổng kết quả là 4152/4451 người dự đoán đúng (93,28%).
Bài viết cũng áp dụng phân tích ROC (Receiver operating characteristic) để so sánh 3 phương pháp.
Bảng 8. Đường cong ROC của các phương pháp
Phương pháp |
MDA |
Logit |
Probit |
Đường cong ROC |
|||
Khu vực dưới ROC |
0,934 |
0,924 |
0,878 |
Trên đồ thị đường cong ROC, trục hoành thể hiện mối liên hệ giữa việc phân loại vỡ nợ sai với tổng nhóm vỡ nợ - độ cụ thể (specificity - khả năng mà mô hình phân loại đúng các trường hợp không vỡ nợ), trong khi trục tung thể hiện độ nhạy cảm (sensitivity - khả năng mô hình phân loại vỡ nợ đúng). Đường cong ROC càng gần trục tung, hay nói cách khác là khu vực dưới đường cong ROC càng lớn thì khả năng dự báo càng tốt.
Khu vực dưới ROC của phương pháp Probit là thấp nhất (0,878), thể hiện độ phù hợp kém nhất. Hai phương pháp MDA và Logit có chỉ số khu vực dưới ROC khá cao và xấp xỉ nhau thể hiện độ phù hợp và khả năng dự đoán rất tốt (lần lượt là 0,934 và 0,924).
- Kết luận
Như vậy, việc ứng dụng 3 phương pháp MDA, Logit và Probit để phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ trong tín dụng khách hàng cá nhân tại Ngân hàng Hợp tác và việc so sánh các phương pháp cho phép rút ra các kết luận sau:
- Về các yếu tố ảnh hưởng: Chất lượng tổ chức sản xuất kinh doanh, kinh nghiệm sản xuất kinh doanh, tăng trưởng doanh thu, tuổi nghề trung bình, sử hữu địa điểm kinh doanh, sử dụng dịch vụ của tổ chức tín dụng khá và ghi chép kế toán là các yếu tố mà cả 3 phương pháp đều cho kết quả phù hợp với hầu hết các nghiên cứu trước đây là có tác động ngược chiều đến khả năng vỡ nợ; trong khi đó, 3 phương pháp có kết quả mâu thuẫn với nhau về các yếu tố: tuổi, ngành nghề kinh doanh, nghiên cứu thị trường, trình độ học vấn; các yếu tố liên quan đến khả năng sinh lời, cơ cấu vốn, hợp đồng tín dụng và các yếu tố khác liên quan đến hoạt động kinh doanh (thời gian trung bình lao động tại cơ sở kinh doanh, quan hệ nhà cung cấp, giá sản phẩm so với thị trường, rủi ro chi phí đầu vào) có chiều ảnh hưởng với xu hướng ngược với giả thiết; các yếu tố còn lại không có ý nghĩa thống kê
- Về so sánh 3 phương pháp: kết quả cho thấy hồi quy Logit phù hợp nhất trong phân tích và kiểm định các yếu tố ảnh hưởng đến khả năng vỡ nợ của khách hàng cá nhân tại Ngân hàng Hợp tác. Phương pháp MDA đem lại kết quả chấp nhận được. Trong khi đó, hồi quy Probit có hiệu quả thấp hơn khá rõ rệt so với 2 phương pháp trên.
Tài liệu tham khảo
- Acquah, H.D & Addo J. (2011), “Determinants of loan repayment performance of fishermen: Empirical evidence from Ghana”, Cercetări Agronomice în Moldova, Vol. 44, p. 89-97.
- Altman, E. I., G Marco, G. & Varetto, F. (1994), “Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)”, Journal of Banking & Finance, Vol. 18, p. 505-529.
- Arminger, G., Enache, D. & Bonne, T. (1997), “Analyzing Credit Risk Data: A Comparison of Logistic Discrimination, Classification Tree Analysis, and Feedforward Network”, Computational Statistics, Vol. 12, Issue 2, p. 293-310.
- Autio, M., Wilska, T-A., Kaartinen, R. & Lähteenmaa, J. (2009), “The Use of Small Instant Loans Among Young Adults – a Gateway to a Consumer Insolvency”, International Journal of Consumer Studies, Vol. 33, Issue 4, p. 407-415.
- Black, S. & Morgan, D. (1998), “Risk and the democratization of credit cards”, Research Paper 9815, Federal Reserve Bank of New York.
- Boyes, W. J., Hoffman, D. L. & Low, S. A. (2002), “An econometric analysis of the bank credit scoring problem”, Journal of Econometrics, Vol. 40, Issue 1, p. 3-14
- Breiman, L. (1984), Classification and regression trees, The Wadsworth statistics/probability series, Wadsworth International Group.
- Chapman, J.M (1990), “Factors Affecting Credit in personal Lending”, National Bureau of Economics Research.
- Crook, J. N. (2001), “The demand for household debt in the USA: evidence from the 1995 Survey of Consumer Finance”, Applied Financial Economics, Vol. 11 (1), p. 83-91.
- Chatterjee, S. & Barcun, S. (1970), “A Nonparametric Approach to Credit Screening”, Journal of the American Statistical Association, Vol. 65, p. 150-154.
- Deininger, K. & Liu, Y. (2009), “Determinants of repayment performance in Indian micro-credit groups”, Policy Research Working Paper Series 4885, The World Bank.
- Dinh, T. H. T. & Kleimeier, S. (2007), “A Credit Scoring Model for Vietnam’s Retail Banking Market”, International Review of Financial Analysis, Vol. 16, Issue 5, p. 571-495.
- Durand, D. (1941), “Risk Elements in Consumer Installment Financing”, National Bureau of Economic Research.
- Duygan-Bump, B. & Grant, C. (2009), “Household debt repayment behaviour: what role do institutions play?”, Economic Policy, Vol. 24, p. 107-140.
- Goldberger, A. S. (1964), Econometric Theory, New York, NY: Wiley
- Haile, M. S., Nyikal, R. & Wangia, S. (2012), actors Affecting Loan Repayment Performance of Smallholder Farmers: East Hararghe, Ethiopia, Lap Lambert Academic Publishing.
- Hand, D. J. (1981), Discrimination and classification, Wiley Series in Probability and Mathematical Statistics. Chichester: Wiley.
- Kocenda, E. & Vojtek, M. (2009), “Default Predictors and Credit Scoring Models for Retail Banking”, CESifo Working Paper, No. 2862.
- Kohansal, M.R. & Mansoori, H. (2009), Factors Affecting Loan Repayment Performance of Farmers in Khorsan-Razavi Province of Iran, Conference on International Research on Food Security, Natural Resource Management and Rural Development, University of Hamburg, 1-4.
- Lea, S. E. G., Webley, P., & Levine, R. M. (1993), “The economic psychology of consumer debt”, Journal of Economic Psychology, 14, 85-119
- Livingstone, S. M., & Lunt, P. K. (1992), “Predicting personal debt and debt repayment: Psychological, social and economic determinants”, Journal of Economic Psychology, 13(1), 111-134.
- Maddala, G. S. (1988), Introduction to Econometrics, Macmillan Pub Co.
- Onyeagocha, S. O. U., Chidebelu, S. A. N. D. & Okorji, E. C. (2012), “Determinants of Repayment of Loan Beneficiaries of Micro Finance Institutions in Southeast States of Nigeria”, International Journal of Agricultural Management and Development, Vol. 2(3), p. 1-9.
- Pham, T. T. T. & Lensink, R. (2008), “Household Borrowing in Vietnam: A Comparative Study of Default Risks of Formal, Informal and Semi-formal Credit”, Journal of Emerging Market Finance, Vol. 7, Issue 3, p. 237-261.
- Rosenberg, E. & Gleit, A. (1994), “Quantitative Methods in Credit Management: A Survey”, Operations Research, Vol. 42, p. 589-613.
- Sharma, M. & Zeller, M. (1997), “Repayment performance in group-based credit programs in Bangladesh: An empirical analysis”, World Development, Vol. 25, p. 1731-1742.
- Thomas, L. C. (2000), “A Survey of Credit and Behavioural Scoring: Forecasting Financial Risk of Lending to Consumers”, International Journal of Forecasting, Vol. 16, Issue 2, p. 149- 172.
- Ugbomeh, G. M. M., Achoja, F. O., Ideh V. & Ofuoku A. U. (2008), “Determinants of Loan Repayment Performance Among Women Self Help Groups in Bayelsa State, Nigeria”, Agriculturae Conspectus Scientificus, Vol. 73, p. 189-195.
- Vasanthi, P. & Raja, P. (2006), “Risk Management Model: an Empirical Assessment of the Risk of Default”, International Research Journal of Finance and Economics, Vol. 1, Issue 1.
- Zelizer, V.A. (1994), Pricing the Priceless Child: The Changing Social Value of Children, Princeton University Press
- Zocco, D.P. (1985), “A framework for expert systems in bank loan management”, Journal of commercial banking lending, Vol. 67, pp. 47-54.
- Özdemir, Ö. & Boran, L. (2004), “An Empirical Investigation on Consumer Credit Default Risk”, Turkish Economic Association Working Paper, 2004 / 20.
- Weber, R. & Musshoff, O. (2012), “Is agricultural microcredit really more risky? Evidence from Tanzania”, Agricultural Finance Review, Vol. 72, pp. 416-435.
- Wiginton, J. C. (1980), “A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior”, Journal of Finance and Quantitative Analysis, Vol. 15, p. 757–776.
[1] Ngân hàng Co-opBank, Email: Địa chỉ email này đang được bảo vệ từ spam bots. Bạn cần bật JavaScript để xem nó.
[2] Đại học Ngoại thương, Email: Địa chỉ email này đang được bảo vệ từ spam bots. Bạn cần bật JavaScript để xem nó.
[3] VCBS, Email: Địa chỉ email này đang được bảo vệ từ spam bots. Bạn cần bật JavaScript để xem nó.